在尝试使用scipy.optimize curve_fit
创建示例时,我发现scipy似乎与Python的math
模块不兼容。虽然函数f1
工作正常,但f2
会抛出错误消息。
from scipy.optimize import curve_fit
from math import sin, pi, log, exp, floor, fabs, pow
x_axis = np.asarray([pi * i / 6 for i in range(-6, 7)])
y_axis = np.asarray([sin(i) for i in x_axis])
def f1(x, m, n):
return m * x + n
coeff1, mat = curve_fit(f1, x_axis, y_axis)
print(coeff1)
def f2(x, m, n):
return m * sin(x) + n
coeff2, mat = curve_fit(f2, x_axis, y_axis)
print(coeff2)
完整的追溯是
Traceback (most recent call last):
File "/Documents/Programming/Eclipse/PythonDevFiles/so_test.py", line 49, in <module>
coeff2, mat = curve_fit(f2, x_axis, y_axis)
File "/usr/local/lib/python3.5/dist-packages/scipy/optimize/minpack.py", line 742, in curve_fit
res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/scipy/optimize/minpack.py", line 377, in leastsq
shape, dtype = _check_func('leastsq', 'func', func, x0, args, n)
File "/usr/local/lib/python3.5/dist-packages/scipy/optimize/minpack.py", line 26, in _check_func
res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
File "/usr/local/lib/python3.5/dist-packages/scipy/optimize/minpack.py", line 454, in func_wrapped
return func(xdata, *params) - ydata
File "/Documents/Programming/Eclipse/PythonDevFiles/so_test.py", line 47, in f2
return m * sin(x) + n
TypeError: only length-1 arrays can be converted to Python scalars
出现错误消息,其中包含列表和numpy
数组作为输入。它会影响我测试的所有math
函数(参见导入函数),并且必须与数学模块如何操作输入数据有关。这对于pow()
函数最为明显 - 如果我不从math
导入此函数,curve_fit
可以与pow()
一起正常工作。
显而易见的问题 - 为什么会发生这种情况以及math
功能如何与curve_fit
一起使用?
P.S。:请不要讨论,不应该用线性拟合拟合样本数据。这只是为了说明问题而选择的。
答案 0 :(得分:3)
小心numpy-arrays,处理数组的操作和处理标量的操作!
Scipy optimize假设输入(初始点)是1d阵列,并且在其他情况下经常出现问题(例如,列表变成了数组,如果你假设在列表上工作,那么事情会受到严重破坏;那些问题在StackOverflow上很常见,并且调试并不容易看到;代码交互有帮助!)。
import numpy as np
import math
x = np.ones(1)
np.sin(x)
> array([0.84147098])
math.sin(x)
> 0.8414709848078965 # this only works as numpy has dedicated support
# as indicated by the error-msg below!
x = np.ones(2)
np.sin(x)
> array([0.84147098, 0.84147098])
math.sin(x)
> TypeError: only size-1 arrays can be converted to Python scalars
说实话:这是对numpy的基本理解的一部分,在使用scipy的某些敏感功能时应该理解。