I have a dataframe,df1
inp aco drtn
2.3.6 dp Less than 1 min
2.3.6 ft 5-10 min
2.5.9 dp More than 1 hour
0.8.0 dp 1-5 min
2.3.6 dp 10-30 min
2.3.6 dp More than 1 hour
0.8.0 dp Less than 1 min
0.8.0 dp 1-5 min
应通过计算出现次数将df1按3列分组。新的数据帧df2将如下所示:
inp aco drtn count
2.3.6 dp Less than 1 min 1
2.3.6 ft 5-10 min 1
2.5.9 dp More than 1 hour 1
0.8.0 dp 1-5 min 2
2.3.6 dp 10-30 min 1
2.3.6 dp More than 1 hour 1
6.2.6 dp 1-5 min 1
专栏:' drtn'应转换为新列:' convrt'。 例如,该旋转柱将看起来像:小于1分钟= 0.59分钟,大于1小时= 61分钟,1-5分钟= 5分钟,5-10分钟= 10,10-30分钟= 30分钟。另一个新专栏:' calc'应该被定义为' count'的值。列乘以列中的值:' convrt'然后是一个新的数据帧,df3应如下所示:
inp aco drtn count convrt calc
2.3.6 dp Less than 1 min 1 0.59 0.59
2.3.6 ft 5-10 min 1 10 10
2.5.9 dp More than 1 hour 1 61 61
0.8.0 dp 1-5 min 2 5 10
2.3.6 dp 10-30 min 1 30 30
2.3.6 dp More than 1 hour 1 61 61
6.2.6 dp 1-5 min 1 5 5
然后是一个新的数据框,df4由列过滤:' aco'。例如:只应保留具有dp的值。然后是一个新列:pct,用于计算列中更改的百分比:' calc'。
inp aco drtn count convrt calc pct
2.3.6 dp Less than 1 min 1 0.59 0.59 0.003
2.5.9 dp More than 1 hour 1 61 61 36.40
0.8.0 dp 1-5 min 2 5 10 0.060
2.3.6 dp 10-30 min 1 30 30 17.90
2.3.6 dp More than 1 hour 1 61 61 36.40
6.2.6 dp 1-5 min 1 5 5 0.030
然后是一个新的数据框,df5带有一个新列:' pct'它会添加列中的所有值:' calc' df3以及列中:' calc' df4并继续划分(df4 / df3)并乘以指定为列的过滤值的索引:' aco'。然后,新列" totalCalcFilteredColumn'得到列的总和:' calc'在过滤的数据帧中,df4。 另一栏名为:'差异'它会添加列中的所有值:' calc' df3以及列中:' calc'然后进行减法(df3-df4)
pctTime totalCalcFilteredColumn diff
dp 94.37 167.59 10
ft 5.63 10 167.59
我该如何解决这个问题?
答案 0 :(得分:1)
设定:
temp=u"""inp;aco;drtn
2.3.6;dp;Less than 1 min
2.3.6;ft;5-10 min
2.5.9;dp;More than 1 hour
0.8.0;dp;1-5 min
2.3.6;dp;10-30 min
2.3.6;dp;More than 1 hour
0.8.0;dp;1-5 min
6.2.6;dp;1-5 min"""
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), sep=";")
print (df)
inp aco drtn
0 2.3.6 dp Less than 1 min
1 2.3.6 ft 5-10 min
2 2.5.9 dp More than 1 hour
3 0.8.0 dp 1-5 min
4 2.3.6 dp 10-30 min
5 2.3.6 dp More than 1 hour
6 0.8.0 dp 1-5 min
7 6.2.6 dp 1-5 min
解决方案:
d = {'1-5 min': 5, '10-30 min': 30, '5-10 min': 10,
'Less than 1 min': 0.59, 'More than 1 hour': 61}
df = df.groupby(['inp', 'aco', 'drtn'], sort=False).size().reset_index(name='count')
#map column by dictionary
df['convrt'] = df['drtn'].map(d)
df['calc'] = df['convrt'].mul(df['count'])
#divide by groups - transform create Series with same size as original df
df['pct'] = df['calc'].div(df.groupby('aco')['calc'].transform('sum')).mul(100)
print (df)
inp aco drtn count convrt calc pct
0 2.3.6 dp Less than 1 min 1 0.59 0.59 0.352050
1 2.3.6 ft 5-10 min 1 10.00 10.00 100.000000
2 2.5.9 dp More than 1 hour 1 61.00 61.00 36.398353
3 0.8.0 dp 1-5 min 2 5.00 10.00 5.966943
4 2.3.6 dp 10-30 min 1 30.00 30.00 17.900829
5 2.3.6 dp More than 1 hour 1 61.00 61.00 36.398353
6 6.2.6 dp 1-5 min 1 5.00 5.00 2.983472
#aggregate sum
df = df.groupby('aco')['calc'].sum().reset_index(name='totalCalcFilteredColumn')
summed = df['totalCalcFilteredColumn'].sum()
df['pctTime'] = df['totalCalcFilteredColumn'].div(summed).mul(100)
#rsub means sub from right summed - df['calc']
df['diff'] = df['totalCalcFilteredColumn'].rsub(summed)
print (df)
aco totalCalcFilteredColumn pctTime diff
0 dp 167.59 94.369052 10.00
1 ft 10.00 5.630948 167.59