我的学校作业有问题。我有一个巧克力棒,包括黑色,白色或黑色&白色(混合)方块。我应该把它分成两组,一组只有白色或黑色和白色的碎片,另一组只有黑色或黑色和白色碎片。将巧克力棒分开意味着沿着分隔各个方块的线水平或垂直地将其破裂。
考虑到巧克力棒的布局,我要找到一个最佳的分区,它将黑色和白色立方体分开并产生尽可能少的碎片,巧克力棒不大于50x50正方形。
巧克力条在标准输入上定义如下: 第一行包含两个整数M(巧克力条中的行数)和N(列数),然后有M列,每列包含N个字符,表示单个正方形(0-黑,1-白,2-混合)< / p>
最佳划分的一些例子,它们的输入分别是(正确的输出是3和7):
3 3
1 1 2
1 2 0
2 0 0
4 4
0 1 1 1
1 0 1 0
1 0 1 0
2 0 0 0
我的问题是我设法制定了一个解决方案,但我使用的算法速度不够快,如果巧克力棒很大,例如:
40 40
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 2 1 2 1 2 0 0 1 2 2 0 0 0 0 0 0 0 0 1 1 2 1 2 0 0 0 0 0 0 0 0 0 0
0 0 0 1 2 2 0 1 1 1 1 1 0 0 1 2 2 0 0 0 0 0 1 0 0 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 2 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1 2 2 0 0 0 1 2 2 1 2 1 0 0 0 0 0 1 2 1 2 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 2 1 2 0 0 0 0 0 2 1 2 2 0 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2 2 1 1 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
0 2 1 2 1 0 2 2 2 2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 0 2 2 1 0 0 0 0 0 0
0 2 2 1 2 0 1 2 2 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0
0 2 2 1 2 0 0 0 0 2 1 2 1 2 1 1 2 0 2 0 0 0 0 0 0 0 1 2 2 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 2 2 2 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 1 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 0 0 0 0
0 0 0 0 0 0 0 2 1 2 0 0 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 2 2 1 0 0 0 0 2 0 1 1 1 2 1 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 2 1 2 2 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 1 2 1 1 2 2 0 0 0 0 0
0 0 0 0 0 0 1 2 1 2 2 1 0 0 0 0 0 0 0 1 2 1 2 0 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 0
0 0 0 0 0 0 1 2 2 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0
0 0 0 0 0 0 1 2 2 2 1 1 1 0 0 0 0 0 0 0 0 1 2 1 2 0 0 0 0 0 0 0 0 0 0 2 2 2 1 0
0 0 0 0 0 0 0 0 0 1 2 1 2 0 0 0 0 0 0 0 0 1 1 1 2 2 0 0 0 0 0 0 0 0 0 1 2 1 1 0
0 0 0 2 1 1 2 2 0 1 2 1 1 0 0 0 0 0 2 2 1 2 2 1 2 2 0 0 0 0 0 0 0 0 0 1 2 2 2 0
0 0 0 2 2 2 1 1 0 0 1 2 2 2 0 0 0 0 2 2 2 1 1 2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 1 2 2 1 1 0 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 1 0 1 1 1 1 1 1 2 1 1 2 2 1 0 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 2 1 1 1 2 1 2 0 0 1 2 1 2 1 2 2 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 1 2 2 1 1 1 1 1 1 1 2 1 0 0 0 0 0 0 0 2 2 2 0 0 0
0 0 0 0 0 0 0 1 1 1 2 0 0 1 1 1 2 2 1 2 2 2 1 0 0 0 1 1 1 0 0 0 0 0 1 2 1 0 0 0
0 0 0 0 0 0 0 2 1 1 2 0 0 0 0 0 0 2 2 2 1 1 1 0 0 0 1 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 2 1 1 1 2 0 0 0 0 1 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 1 1 2 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 1 2 1 0 0
0 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 1 2 1 0 0
0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
然后我的程序需要10秒才能解决它(正确的解决方案是126,我应该可以在2秒内解决它!)
我的算法大致适用于这样的一些小优化:遍历可能切割的所有可能的行,然后递归地对2个新出现的矩形执行相同的操作,如果它们不再被分割,则返回1。
通过所有可能的切割迭代后的函数总是返回最小值,一旦找到最小值,然后存储它,如果我碰巧需要再次求解这个矩形,那么只返回值。
我想也许如果我碰巧已经解决了一个特定的矩形,现在我需要解决一个更大或更小的行或列,那么我可以某种方式使用我已有的解决方案并使用它对于新的。但我真的不知道如何实现这样的功能。 现在我的算法将它视为一个全新的未解决的矩形。
到目前为止我的代码:
#include <stdio.h>
#include <stdlib.h>
unsigned int M, N;
unsigned int ****pieces; ////already solved rectangles, the value of pieces[y0][x0][y1][x1] is the optimal number of pieces in which the particular rectangle(that has upperleft corner in [x0,y0] and bottomright corner in[x1,y1]) can be divided
int ****checked;
unsigned int inf;
unsigned int minbreaks(int mat[M][N], unsigned int starti, unsigned int startj, unsigned int maxi, unsigned int maxj) {
if (pieces[starti][startj][maxi][maxj] != 0) {
return pieces[starti][startj][maxi][maxj];
} else {
unsigned int vbreaks[maxj - 1];
unsigned int hbreaks[maxi - 1];
for (unsigned int i = 0; i < maxj - 1; i++) {
vbreaks[i] = inf;
}
for (unsigned int i = 0; i < maxi - 1; i++) {
hbreaks[i] = inf;
}
unsigned int currentmin = inf;
for (unsigned int i = starti; i < maxi; i++) {
for (unsigned int j = startj; j < maxj - 1; j++) {
if (mat[i][j] != 2) {
for (unsigned int k = startj + 1; k < maxj; k++) {
if (vbreaks[k - 1] == inf) {
for (unsigned int z = starti; z < maxi; z++) {
if (!checked[i][j][z][k]) {
if (mat[z][k] != 2 && mat[i][j] != mat[z][k]) {
vbreaks[k - 1] = minbreaks(mat, starti, startj, maxi, k) + minbreaks(mat, starti, k, maxi, maxj);
if (vbreaks[k - 1] < currentmin) {
currentmin = vbreaks[k - 1];
}
break;
}
checked[i][j][z][k] = 1;
}
}
}
}
}
}
}
for (unsigned int i = starti; i < maxi - 1; i++) {
for (unsigned int j = startj; j < maxj; j++) {
if (mat[i][j] != 2) {
for (unsigned int k = starti + 1; k < maxi; k++) {
if (hbreaks[k - 1] == inf) {
for (unsigned int z = startj; z < maxj; z++) {
if (!checked[i][j][k][z]) {
if (mat[k][z] != 2 && mat[i][j] != mat[k][z]) {
hbreaks[k - 1] = minbreaks(mat, starti, startj, k, maxj) + minbreaks(mat, k, startj, maxi, maxj);
if (hbreaks[k - 1] < currentmin) {
currentmin = hbreaks[k - 1];
}
break;
}
checked[i][j][k][z] = 1;
}
}
}
}
}
}
}
if (currentmin == inf) {
currentmin = 1;
}
pieces[starti][startj][maxi][maxj] = currentmin;
return currentmin;
}
}
int main(void) {
FILE *file = stdin;
fscanf(file, "%u %u", &M, &N);
int mat[M][N];
pieces = malloc(sizeof (unsigned int***)*M);
checked = malloc(sizeof (int***)*M);
for (unsigned int i = 0; i < M; i++) {//initialize the pieces,checked and mat arrays.
pieces[i] = malloc(sizeof (unsigned int**)*N);
checked[i] = malloc(sizeof (int**)*N);
for (unsigned int j = 0; j < N; j++) {
int x;
fscanf(file, "%d", &x);
mat[i][j] = x;
pieces[i][j] = malloc(sizeof (unsigned int*)*(M + 1));
checked[i][j] = malloc(sizeof (int*)*M);
for (unsigned int y = i; y < M + 1; y++) {
pieces[i][j][y] = malloc(sizeof (unsigned int)*(N + 1));
for (unsigned int x = j; x < N + 1; x++) {
pieces[i][j][y][x] = 0;
}
}
for (unsigned int y = 0; y < M; y++) {
checked[i][j][y] = malloc(sizeof (int)*N);
for (unsigned int x = 0; x < N; x++) {
checked[i][j][y][x] = 0;
}
}
}
}
inf = M * N + 1; //number one bigger than maximal theoretically possible number of divisions
unsigned int result = minbreaks(mat, 0, 0, M, N);
printf("%u\n", result);
return (EXIT_SUCCESS);
}
所以任何人都有改进的想法吗?
答案 0 :(得分:2)
对于任意矩形,我们可以在O(1)
时间内知道它是否包含无白色或无黑色片段,并且O(M * N)
分别对白色和黑色进行矩阵前缀和预处理(计数1表示每件)。
我们可以将潜在的水平和垂直分割点分别存储在两个k-d树中,以便对任意矩形进行O(log(|splitPoints|) + k)
检索,再次预处理整个输入。
之后,一般的递归算法可能如下:
f(tl, br):
if storedSolution(tl, br):
return storedSolution(tl, br)
else if isValid(tl, br):
return setStoredSolution(tl, br, 0)
best = Infinity
for p in vSplitPoints(tl, br):
best = min(
best,
1 +
f(tl, (p.x-1, br.y)) +
f((p.x, tl.y), br)
)
for p in hSplitPoints(tl, br):
best = min(
best,
1 +
f(tl, (br.x, p.y-1)) +
f((tl.x, p.y), br)
)
return setStoredSolution(tl, br, best)
答案 1 :(得分:1)
对此有一种动态编程方法,但它也不便宜。您需要填写一组表格,为主要正方形内的矩形的每个大小和位置提供完全划分该较小矩形所需的最小分割数。
对于大小为1x1的矩形,则答案为0。
对于大小为AxB的矩形,查看其所有单元格是否足够均匀,该矩形的答案为0。如果是的话,很好。如果没有尝试所有可能的水平和垂直划分。这些分区中的每一个都为您提供了两个较小的矩形。如果您在尝试找出大小为AxB的矩形的答案之前计算出所有尺寸为A-1xB且尺寸较小且尺寸为AxB-1且较小的矩形的答案,则您都准备好了解两个较小矩形的答案。因此,对于每个可能的划分,将两个较小矩形的答案相加,并添加一个以获得该划分的成本。选择能够为您提供最小成本的分部,并为您提供当前AxB矩形的答案。
在较大的矩形之前计算出所有较小矩形的答案,你得出的最后一个答案为你提供了整个正方形的最佳分割数。找出最佳分区的最简单方法是为每个矩形保留一些额外的信息,记录最佳分区的内容。
对于NxN正方形,有O(N ^ 4)个矩形 - 正方形中的任意两个点将矩形定义为对角。大小为O(N)xO(N)的矩形具有O(N)个可能的划分,所以你有类似O(N ^ 5)算法的东西,或者如果N是NxN平方以来的输入大小,则为O(N ^ 2.5)输入数据大小为O(N ^ 2)。
(您也可以通过获取原始代码并将调用结果存储到minBreaks()来执行非常类似的操作,这样如果使用相同的参数多次调用minBreaks(),它只会返回存储的答案而不是用更多递归调用minBreaks()来重新计算它。
答案 2 :(得分:1)
感谢所有帮助过我的人,我的错误是在那些嵌套循环中我试图避免一些不必要的休息,例如
1 1 -> 1 | 1
1 1 1 | 1
1 1 1 | 1
认为它会加快运行时间,但正确的做法就是随时随地打破巧克力棒。 无论如何,对于任何感兴趣的人都是我的工作代码:
#include <stdio.h>
#include <stdlib.h>
unsigned int M, N;
unsigned int ****pieces; ////already solved rectangles, the value of pieces[y0][x0][y1][x1] is the optimal number of pieces in which the particular rectangle(that has upperleft corner in [x0,y0] and bottomright corner in[x1,y1]) can be divided
unsigned int inf;
int isOneColor(int mat[M][N], unsigned int starti, unsigned int startj, unsigned int maxi, unsigned int maxj) {
int c = 2;
for (unsigned int i = starti; i < maxi; i++) {
for (unsigned int j = startj; j < maxj; j++) {
if (c == 2) {
if (mat[i][j] != 2) {
c = mat[i][j];
}
} else if (c != mat[i][j] && mat[i][j] != 2) {
return 0;
}
}
}
return 1;
}
unsigned int minbreaks(int mat[M][N], unsigned int starti, unsigned int startj, unsigned int maxi, unsigned int maxj) {
if (pieces[starti][startj][maxi][maxj] != 0) {
return pieces[starti][startj][maxi][maxj];
} else if (isOneColor(mat, starti, startj, maxi, maxj)) {
return pieces[starti][startj][maxi][maxj] = 1;
} else {
unsigned int currentmin = inf;
for (unsigned int j = startj; j < maxj - 1; j++) {
unsigned int c = minbreaks(mat, starti, startj, maxi, j + 1) + minbreaks(mat, starti, j + 1, maxi, maxj);
if (c < currentmin) {
currentmin = c;
}
}
for (unsigned int i = starti; i < maxi - 1; i++) {
unsigned int c = minbreaks(mat, starti, startj, i + 1, maxj) + minbreaks(mat, i + 1, startj, maxi, maxj);
if (c < currentmin) {
currentmin = c;
}
}
pieces[starti][startj][maxi][maxj] = currentmin;
return currentmin;
}
}
int main(void) {
FILE *file = stdin;
//FILE *file = fopen("inputfile", "r");
fscanf(file, "%u %u", &M, &N);
int mat[M][N];
pieces = malloc(sizeof (unsigned int***)*M);
for (unsigned int i = 0; i < M; i++) {
pieces[i] = malloc(sizeof (unsigned int**)*N);
for (unsigned int j = 0; j < N; j++) {
int x;
fscanf(file, "%d", &x);
mat[i][j] = x;
pieces[i][j] = malloc(sizeof (unsigned int*)*(M + 1));
for (unsigned int y = i; y < M + 1; y++) {
pieces[i][j][y] = malloc(sizeof (unsigned int)*(N + 1));
for (unsigned int x = j; x < N + 1; x++) {
pieces[i][j][y][x] = 0;
}
}
}
}
inf = M * N + 1; //number that is bigger by one than maximal theoretically possible number of divisions
unsigned int result = minbreaks(mat, 0, 0, M, N);
printf("%u\n", result);
return (EXIT_SUCCESS);
}