我想使用滚动窗口计算DataFrame的两列之间的Spearman和/或Pearson Correlation。
我试过df['corr'] = df['col1'].rolling(P).corr(df['col2'])
(P是窗口大小)
但我似乎无法定义该方法。 (添加method='spearman'
作为参数会产生错误:
File "main.py", line 29, in __init__
_df['corr'] = g['col1'].rolling(P).corr(g['col2'], method = corr_function)
File "~\Python36\lib\site-packages\pandas\core\window.py", line 1287, in corr
**kwargs)
File "~\Python36\lib\site-packages\pandas\core\window.py", line 1054, in corr
_get_corr, pairwise=bool(pairwise))
File "~\Python36\lib\site-packages\pandas\core\window.py", line 1866, in _flex_binary_moment
return f(X, Y)
File "~\Python36\lib\site-packages\pandas\core\window.py", line 1051, in _get_corr
return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs))
File "~\Python36\lib\site-packages\pandas\core\window.py", line 1280, in cov
ddof=ddof, **kwargs)
File "~\Python36\lib\site-packages\pandas\core\window.py", line 1020, in cov
_get_cov, pairwise=bool(pairwise))
File "~\Python36\lib\site-packages\pandas\core\window.py", line 1866, in _flex_binary_moment
return f(X, Y)
File "~\Python36\lib\site-packages\pandas\core\window.py", line 1015, in _get_cov
center=self.center).count(**kwargs)
TypeError: count() got an unexpected keyword argument 'method'
公平地说,我不希望这个工作,因为阅读文档,没有提到rolling.corr
支持方法......
考虑到数据帧非常大(> 10M行),有关如何执行此操作的任何建议吗?
答案 0 :(得分:5)
rolling.corr
做Pearson,所以你可以用它。对于斯皮尔曼,请使用以下内容:
import pandas as pd
from numpy.lib.stride_tricks import as_strided
from numpy.lib import pad
import numpy as np
def rolling_spearman(seqa, seqb, window):
stridea = seqa.strides[0]
ssa = as_strided(seqa, shape=[len(seqa) - window + 1, window], strides=[stridea, stridea])
strideb = seqa.strides[0]
ssb = as_strided(seqb, shape=[len(seqb) - window + 1, window], strides =[strideb, strideb])
ar = pd.DataFrame(ssa)
br = pd.DataFrame(ssb)
ar = ar.rank(1)
br = br.rank(1)
corrs = ar.corrwith(br, 1)
return pad(corrs, (window - 1, 0), 'constant', constant_values=np.nan)
E.g:
In [144]: df = pd.DataFrame(np.random.randint(0,1000,size=(10,2)), columns = list('ab'))
In [145]: df['corr'] = rolling_spearman(df.a, df.b, 4)
In [146]: df
Out[146]:
a b corr
0 429 922 NaN
1 618 382 NaN
2 476 517 NaN
3 267 536 -0.8
4 582 844 -0.4
5 254 895 -0.4
6 583 974 0.4
7 687 298 -0.4
8 697 447 -0.6
9 383 35 0.4
说明:numpy.lib.stride_tricks.as_strided
是一种hacky方法,在这种情况下,我们可以看到一个看起来像二维数组的序列,其中包含我们正在查看的序列的滚动窗口部分。
从那时起,它很简单。 Spearman相关等效于将序列转换为等级,并采用Pearson相关系数。在DataFrame
s上,Pandas有助于快速实现这一行。然后在最后我们使用NaN值填充结果Series
的开头(这样您就可以将它作为列添加到数据框或其他任何位置)。
(个人提示:在我意识到你需要的所有东西已经在熊猫中之前......我花了很长时间才试图弄清楚如何有效地使用numpy和scipy来做这件事。)。
为了显示这种方法的速度优势而不仅仅是在滑动窗口上循环,我创建了一个名为srsmall.py
的小文件,其中包含:
import pandas as pd
from numpy.lib.stride_tricks import as_strided
import scipy.stats
from numpy.lib import pad
import numpy as np
def rolling_spearman_slow(seqa, seqb, window):
stridea = seqa.strides[0]
ssa = as_strided(seqa, shape=[len(seqa) - window + 1, window], strides=[stridea, stridea])
strideb = seqa.strides[0]
ssb = as_strided(seqb, shape=[len(seqb) - window + 1, window], strides =[strideb, strideb])
corrs = [scipy.stats.spearmanr(a, b)[0] for (a,b) in zip(ssa, ssb)]
return pad(corrs, (window - 1, 0), 'constant', constant_values=np.nan)
def rolling_spearman_quick(seqa, seqb, window):
stridea = seqa.strides[0]
ssa = as_strided(seqa, shape=[len(seqa) - window + 1, window], strides=[stridea, stridea])
strideb = seqa.strides[0]
ssb = as_strided(seqb, shape=[len(seqb) - window + 1, window], strides =[strideb, strideb])
ar = pd.DataFrame(ssa)
br = pd.DataFrame(ssb)
ar = ar.rank(1)
br = br.rank(1)
corrs = ar.corrwith(br, 1)
return pad(corrs, (window - 1, 0), 'constant', constant_values=np.nan)
并比较表现:
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: from srsmall import rolling_spearman_slow as slow
In [4]: from srsmall import rolling_spearman_quick as quick
In [5]: for i in range(6):
...: df = pd.DataFrame(np.random.randint(0,1000,size=(10*(10**i),2)), columns=list('ab'))
...: print len(df), " rows"
...: print "quick: ",
...: %timeit quick(df.a, df.b, 4)
...: print "slow: ",
...: %timeit slow(df.a, df.b, 4)
...:
10 rows
quick: 100 loops, best of 3: 3.52 ms per loop
slow: 100 loops, best of 3: 3.2 ms per loop
100 rows
quick: 100 loops, best of 3: 3.53 ms per loop
slow: 10 loops, best of 3: 42 ms per loop
1000 rows
quick: 100 loops, best of 3: 3.82 ms per loop
slow: 1 loop, best of 3: 430 ms per loop
10000 rows
quick: 100 loops, best of 3: 7.47 ms per loop
slow: 1 loop, best of 3: 4.33 s per loop
100000 rows
quick: 10 loops, best of 3: 50.2 ms per loop
slow: 1 loop, best of 3: 43.4 s per loop
1000000 rows
quick: 1 loop, best of 3: 404 ms per loop
slow:
在一百万行(在我的机器上),快速(熊猫)版本在不到半秒的时间内运行。上面没有显示但是1000万花了8.43秒。缓慢的仍然在运行,但假设线性增长继续下去,1M应该需要7分钟,10M需要1个多小时。