给出两个NumPy数组,比如说:
import numpy as np
import numpy.random as rand
n = 1000
x = rand.binomial(n=1, p=.5, size=(n, 10))
y = rand.binomial(n=1, p=.5, size=(n, 10))
以下是否有更有效的方法来计算X
:
X = np.zeros((n, n))
for i in range(n):
for j in range(n):
X[i, j] = 1 * np.all(x[i] == y[j])
答案 0 :(得分:2)
方法#1:输入数组0s
& 1s
强>
对于仅包含0s
和1s
的输入数组,我们可以将每个行减少为标量,从而将输入数组减少到1D
然后利用broadcasting
,就像所以 -
n = x.shape[1]
s = 2**np.arange(n)
x1D = x.dot(s)
y1D = y.dot(s)
Xout = (x1D[:,None] == y1D).astype(float)
方法#2:通用案例
对于一般情况,我们可以使用views
-
# https://stackoverflow.com/a/45313353/ @Divakar
def view1D(a, b): # a, b are arrays
a = np.ascontiguousarray(a)
b = np.ascontiguousarray(b)
void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
return a.view(void_dt).ravel(), b.view(void_dt).ravel()
x1D, y1D = view1D(x, y)
Xout = (x1D[:,None] == y1D).astype(float)
运行时测试
# Setup
In [287]: np.random.seed(0)
...: n = 1000
...: x = rand.binomial(n=1, p=.5, size=(n, 10))
...: y = rand.binomial(n=1, p=.5, size=(n, 10))
# Original approach
In [288]: %%timeit
...: X = np.zeros((n, n))
...: for i in range(n):
...: for j in range(n):
...: X[i, j] = 1 * np.all(x[i] == y[j])
1 loop, best of 3: 4.69 s per loop
# Approach #1
In [290]: %%timeit
...: n = x.shape[1]
...: s = 2**np.arange(n)
...: x1D = x.dot(s)
...: y1D = y.dot(s)
...: Xout = (x1D[:,None] == y1D).astype(float)
1000 loops, best of 3: 1.42 ms per loop
# Approach #2
In [291]: %%timeit
...: x1D, y1D = view1D(x, y)
...: Xout = (x1D[:,None] == y1D).astype(float)
100 loops, best of 3: 18.5 ms per loop