import numpy as np
import scipy.sparse as scsp
from scipy.sparse import csr_matrix,lil_matrix
# create an empty numpy matrix
wi=np.empty((num_clusters*num_cluster_neurons, input))
for i in range(num_clusters*num_cluster_neurons):
temp_neuron_prob=dic_cluster_prob[dic_neuron_cluster[i]]
#create 1*input shape sparse matrix according to probability
lil=lil_matrix(scsp.rand(1, input, temp_neuron_prob))
#want to assign the 1*input sparse matrix to one slice of the numpy matrix
wi[i,:]=lil[:]
我尝试将lil_matrix的值分配给一个numpy数组,但它给出了错误'设置一个带序列的数组元素'
我想知道为什么会出现这个错误,因为它们具有相同的大小,我怎么能提高效率,因为numpy数组比稀疏矩阵(lil_matrix)快。
我想使用numpy数组来获取稀疏矩阵创建的值
答案 0 :(得分:0)
稀疏矩阵不是数组子类(如<html><body>
<script src="text/javascript">
// Function to download data to a file
function download(data, filename, type) {
var file = new Blob([data], {type: type});
if (window.navigator.msSaveOrOpenBlob) {// IE10+
window.navigator.msSaveOrOpenBlob(file, filename);
}
else { // Others
var a = document.createElement("a"),
url = URL.createObjectURL(file);
a.href = url;
a.download = filename;
document.body.appendChild(a);
a.click();
setTimeout(function() {
document.body.removeChild(a);
window.URL.revokeObjectURL(url);
}, 0);
}
}
</script>
</body></html>
),并且不一定表现得像一个(尽管它在很多方面都尝试过)。
np.matrix
但是如果我首先将稀疏矩阵转换为数组或矩阵,则赋值可以起作用:
In [129]: arr = np.zeros((3,4),int)
In [130]: M = sparse.lil_matrix([0,1,2,0])
In [131]: M.shape
Out[131]: (1, 4)
In [132]: arr[0,:] = M
...
ValueError: setting an array element with a sequence.
作为一般规则,稀疏矩阵无法插入In [133]: arr[0,:] = M.A
In [134]: arr[0,:] = M.todense()
In [135]: arr
Out[135]:
array([[0, 1, 2, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
代码。例外情况是numpy
代码将任务委托给对象自己的方法。
看起来你正在尝试生成类似的东西:
numpy
纯粹的稀疏等价物可能是:
In [148]: arr = np.zeros((3,5),float)
In [149]: for i in range(arr.shape[0]):
...: arr[i,:] = sparse.rand(1,5, .2*(i+1)).A
...:
In [150]: arr
Out[150]:
array([[ 0. , 0. , 0.82470353, 0. , 0. ],
[ 0. , 0.43339367, 0.99427277, 0. , 0. ],
[ 0. , 0.99843277, 0.05182824, 0.1705916 , 0. ]])
但考虑到In [151]: alist = []
In [152]: for i in range(3):
...: alist.append(sparse.rand(1,5, .2*(i+1)))
...:
...:
In [153]: alist
Out[153]:
[<1x5 sparse matrix of type '<class 'numpy.float64'>'
with 1 stored elements in COOrdinate format>,
<1x5 sparse matrix of type '<class 'numpy.float64'>'
with 2 stored elements in COOrdinate format>,
<1x5 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>]
In [154]: sparse.vstack(alist)
Out[154]:
<3x5 sparse matrix of type '<class 'numpy.float64'>'
with 6 stored elements in COOrdinate format>
In [155]: _.A
Out[155]:
array([[ 0. , 0. , 0. , 0.19028467, 0. ],
[ 0. , 0. , 0. , 0.92668274, 0.67424419],
[ 0.96208905, 0.63604635, 0. , 0.69463657, 0. ]])
使用稀疏sparse.vstack
将矩阵连接到一个新矩阵,bmat
结合了组件的bmat
属性,密集阵列累积方法可能会更快。