我有一个带数据的pandas.core.series.Series
0 [00115840, 00110005, 001000033, 00116000...
1 [00267285, 00263627, 00267010, 0026513...
2 [00335595, 00350750]
我想从系列中删除前导零。我试过
x.astype('int64')
但收到错误消息
ValueError: setting an array element with a sequence.
你能否告诉我如何在python 3.x中执行此操作?
答案 0 :(得分:4)
如果希望string
的列表转换为integers
的列表,请使用list comprehension
:
s = pd.Series([[int(y) for y in x] for x in s], index=s.index)
s = s.apply(lambda x: [int(y) for y in x])
样品:
a = [['00115840', '00110005', '001000033', '00116000'],
['00267285', '00263627', '00267010', '0026513'],
['00335595', '00350750']]
s = pd.Series(a)
print (s)
0 [00115840, 00110005, 001000033, 00116000]
1 [00267285, 00263627, 00267010, 0026513]
2 [00335595, 00350750]
dtype: object
s = s.apply(lambda x: [int(y) for y in x])
print (s)
0 [115840, 110005, 1000033, 116000]
1 [267285, 263627, 267010, 26513]
2 [335595, 350750]
dtype: object
编辑:
如果只想要integer
,您可以展平价值并投放到int
:
s = pd.Series([item for sublist in s for item in sublist]).astype(int)
替代解决方案:
import itertools
s = pd.Series(list(itertools.chain(*s))).astype(int)
print (s)
0 115840
1 110005
2 1000033
3 116000
4 267285
5 263627
6 267010
7 26513
8 335595
9 350750
dtype: int32
<强>计时强>:
a = [['00115840', '00110005', '001000033', '00116000'],
['00267285', '00263627', '00267010', '0026513'],
['00335595', '00350750']]
s = pd.Series(a)
s = pd.concat([s]*1000).reset_index(drop=True)
In [203]: %timeit pd.Series([[int(y) for y in x] for x in s], index=s.index)
100 loops, best of 3: 4.66 ms per loop
In [204]: %timeit s.apply(lambda x: [int(y) for y in x])
100 loops, best of 3: 5.13 ms per loop
#cᴏʟᴅsᴘᴇᴇᴅ sol
In [205]: %%timeit
...: v = pd.Series(np.concatenate(s.values.tolist()))
...: v.astype(int).groupby(s.index.repeat(s.str.len())).agg(pd.Series.tolist)
...:
1 loop, best of 3: 226 ms per loop
#Wen solution
In [211]: %timeit pd.Series(s.apply(pd.Series).stack().astype(int).groupby(level=0).apply(list))
1 loop, best of 3: 1.12 s per loop
带有flatenning的解决方案(@cᴏʟᴅsᴘᴇᴇᴅ的想法):
In [208]: %timeit pd.Series([item for sublist in s for item in sublist]).astype(int)
100 loops, best of 3: 2.55 ms per loop
In [209]: %timeit pd.Series(list(itertools.chain(*s))).astype(int)
100 loops, best of 3: 2.2 ms per loop
#cᴏʟᴅsᴘᴇᴇᴅ sol
In [210]: %timeit pd.Series(np.concatenate(s.values.tolist()))
100 loops, best of 3: 7.71 ms per loop
答案 1 :(得分:4)
Arr1[1]
数据输入
s=pd.Series(s.apply(pd.Series).astype(int).values.tolist())
s
Out[282]:
0 [1, 2]
1 [3, 4]
dtype: object
更新:感谢Jez并冷漠指出: - )
s=pd.Series([['001','002'],['003','004']])
答案 2 :(得分:2)
使用np.concatenate
-
s
0 [00115840, 36869, 262171, 39936]
1 [00267285, 92055, 93704, 11595]
2 [00335595, 119272]
Name: 1, dtype: object
v = pd.Series(np.concatenate(s.tolist()))
或者(感谢jezrael的建议),使用更快的.values.tolist
-
v = pd.Series(np.concatenate(s.values.tolist()))
v
0 00115840
1 36869
2 262171
3 39936
4 00267285
5 92055
6 93704
7 11595
8 00335595
9 119272
dtype: object
现在,你正在使用astype
做什么 -
v.astype(int)
0 115840
1 36869
2 262171
3 39936
4 267285
5 92055
6 93704
7 11595
8 335595
9 119272
dtype: int64
如果您有数据作为花车,请改用astype(float)
。
如果您愿意,可以使用groupby
+ agg
-
v.astype(int).groupby(s.index.repeat(s.str.len())).agg(pd.Series.tolist)
0 [115840, 36869, 262171, 39936]
1 [267285, 92055, 93704, 11595]
2 [335595, 119272]
dtype: object
答案 3 :(得分:1)
#where x is a series
x = x.str.lstrip('0')
答案 4 :(得分:0)
如果您混用了dtype,则下面的行应该起作用
df ['col'] = df ['col']。apply(lambda x:x.lstrip('0')如果type(x)== str else x)
答案 5 :(得分:0)
如果您想要更清晰的解决方案,可以尝试以下操作: 假设a是原始系列。
b = a.explode().astype(int)
a = b.groupby(b.index).agg(list)
尽管如此,这比@ cs95和@jezrael发布的解决方案要慢