从pandas.core.series.Series中删除前导零

时间:2018-01-07 16:35:56

标签: python pandas time-series

我有一个带数据的pandas.core.series.Series

0    [00115840, 00110005, 001000033, 00116000...
1    [00267285, 00263627, 00267010, 0026513...
2                             [00335595, 00350750]

我想从系列中删除前导零。我试过

x.astype('int64')

但收到错误消息

ValueError: setting an array element with a sequence.

你能否告诉我如何在python 3.x中执行此操作?

6 个答案:

答案 0 :(得分:4)

如果希望string的列表转换为integers的列表,请使用list comprehension

s = pd.Series([[int(y) for y in x] for x in s], index=s.index)
s = s.apply(lambda x: [int(y) for y in x])

样品:

a = [['00115840', '00110005', '001000033', '00116000'],
     ['00267285', '00263627', '00267010', '0026513'],
     ['00335595', '00350750']]

s = pd.Series(a)
print (s)
0    [00115840, 00110005, 001000033, 00116000]
1      [00267285, 00263627, 00267010, 0026513]
2                         [00335595, 00350750]
dtype: object

s = s.apply(lambda x: [int(y) for y in x])
print (s)
0    [115840, 110005, 1000033, 116000]
1      [267285, 263627, 267010, 26513]
2                     [335595, 350750]
dtype: object

编辑:

如果只想要integer,您可以展平价值并投放到int

s = pd.Series([item for sublist in s for item in sublist]).astype(int)

替代解决方案:

import itertools
s = pd.Series(list(itertools.chain(*s))).astype(int)

print (s)
0     115840
1     110005
2    1000033
3     116000
4     267285
5     263627
6     267010
7      26513
8     335595
9     350750
dtype: int32

<强>计时

a = [['00115840', '00110005', '001000033', '00116000'],
     ['00267285', '00263627', '00267010', '0026513'],
     ['00335595', '00350750']]

s = pd.Series(a)
s = pd.concat([s]*1000).reset_index(drop=True)
In [203]: %timeit pd.Series([[int(y) for y in x] for x in s], index=s.index)
100 loops, best of 3: 4.66 ms per loop

In [204]: %timeit s.apply(lambda x: [int(y) for y in x])
100 loops, best of 3: 5.13 ms per loop

#cᴏʟᴅsᴘᴇᴇᴅ sol
In [205]: %%timeit
     ...: v = pd.Series(np.concatenate(s.values.tolist()))
     ...: v.astype(int).groupby(s.index.repeat(s.str.len())).agg(pd.Series.tolist)
     ...: 
1 loop, best of 3: 226 ms per loop

#Wen solution
In [211]: %timeit pd.Series(s.apply(pd.Series).stack().astype(int).groupby(level=0).apply(list))
1 loop, best of 3: 1.12 s per loop

带有flatenning的解决方案(@cᴏʟᴅsᴘᴇᴇᴅ的想法):

In [208]: %timeit pd.Series([item for sublist in s for item in sublist]).astype(int)
100 loops, best of 3: 2.55 ms per loop

In [209]: %timeit pd.Series(list(itertools.chain(*s))).astype(int)
100 loops, best of 3: 2.2 ms per loop

#cᴏʟᴅsᴘᴇᴇᴅ sol
In [210]: %timeit pd.Series(np.concatenate(s.values.tolist()))
100 loops, best of 3: 7.71 ms per loop

答案 1 :(得分:4)

Arr1[1]

数据输入

s=pd.Series(s.apply(pd.Series).astype(int).values.tolist())
s
Out[282]: 
0    [1, 2]
1    [3, 4]
dtype: object

更新:感谢Jez并冷漠指出: - )

s=pd.Series([['001','002'],['003','004']])

答案 2 :(得分:2)

使用np.concatenate -

展平您的数据
s

0    [00115840, 36869, 262171, 39936]
1     [00267285, 92055, 93704, 11595]
2                  [00335595, 119272]
Name: 1, dtype: object

v = pd.Series(np.concatenate(s.tolist()))

或者(感谢jezrael的建议),使用更快的.values.tolist -

v = pd.Series(np.concatenate(s.values.tolist()))

v

0    00115840
1       36869
2      262171
3       39936
4    00267285
5       92055
6       93704
7       11595
8    00335595
9      119272
dtype: object

现在,你正在使用astype做什么 -

v.astype(int)

0    115840
1     36869
2    262171
3     39936
4    267285
5     92055
6     93704
7     11595
8    335595
9    119272
dtype: int64

如果您有数据作为花车,请改用astype(float)

如果您愿意,可以使用groupby + agg -

将结果重新塑造为原始格式
v.astype(int).groupby(s.index.repeat(s.str.len())).agg(pd.Series.tolist)

0    [115840, 36869, 262171, 39936]
1     [267285, 92055, 93704, 11595]
2                  [335595, 119272]
dtype: object

答案 3 :(得分:1)

#where x is a series
x = x.str.lstrip('0')  

答案 4 :(得分:0)

如果您混用了dtype,则下面的行应该起作用

df ['col'] = df ['col']。apply(lambda x:x.lstrip('0')如果type(x)== str else x)

答案 5 :(得分:0)

如果您想要更清晰的解决方案,可以尝试以下操作: 假设a是原始系列。

b = a.explode().astype(int)
a = b.groupby(b.index).agg(list)

尽管如此,这比@ cs95和@jezrael发布的解决方案要慢