我的目标是安排Azure批处理任务从添加之日起每5分钟运行一次,并使用Python SDK创建/管理我的Azure资源。我尝试创建Job-Schedule并在指定的Pool下自动创建一个新Job。
job_spec = batch.models.JobSpecification(
pool_info=batch.models.PoolInformation(pool_id=pool_id)
)
schedule = batch.models.Schedule(
start_window=datetime.timedelta(hours=1),
recurrence_interval=datetime.timedelta(minutes=5)
)
setup = batch.models.JobScheduleAddParameter(
'python_test_schedule',
schedule,
job_spec
)
batch_client.job_schedule.add(setup)
我所做的就是为这个新工作添加一项任务。但是这个任务似乎只在添加后运行一次(就像正常任务一样)。为了让任务反复运行,我还需要做些什么吗? JobSchedule似乎没有太多文档和示例。
谢谢!任何帮助表示赞赏。
答案 0 :(得分:1)
您是正确的,JobSchedule将以指定的时间间隔创建新作业。此外,您无法完成任务"重新运行"一旦完成,每5分钟一次。你可以这样做:
我可能会推荐第二个选项,因为它可以更灵活地监控任务和工作的进度并采取相应的措施。 创建作业的示例客户端可能看起来像这样:
job_manager = models.JobManagerTask(
id='job_manager',
command_line="/bin/bash -c 'python ./job_manager.py'",
environment_settings=[
mdoels.EnvironmentSettings('AZ_BATCH_KEY', AZ_BATCH_KEY)],
resource_files=[
models.ResourceFile(blob_sas="https://url/to/job_manager.py", file_name="job_manager.py")],
authentication_token_settings=models.AuthenticationTokenSettings(
access=[models.AccessScope.job]),
kill_job_on_completion=True, # This will mark the job as complete once the Job Manager has finished.
run_exclusive=False) # Whether the job manager needs a dedicated VM - this will depend on the nature of the other tasks running on the VM.
new_job = models.JobAddParameter(
id='my_job',
job_manager_task=job_manager,
pool_info=models.PoolInformation(pool_id='my_pool'))
batch_client.job.add(new_job)
现在我们需要一个脚本作为计算节点上的作业管理器运行。在这种情况下,我将使用Python,因此您需要向池中添加StartTask(或JobPrepTask到作业)以安装azure-batch Python包。
此外,作业管理器任务需要能够对Batch API进行身份验证。有两种方法可以执行此操作,具体取决于作业管理器将执行的活动范围。如果您只需要添加任务,则可以使用authentication_token_settings属性,该属性将AAD令牌环境变量添加到作业管理器任务,并具有仅访问当前作业的权限。如果您需要执行其他操作的权限,例如更改池或启动新作业,则可以通过环境变量传递帐户密钥。两个选项如上所示。
您在作业管理器任务上运行的脚本可能如下所示:
import os
import time
from azure.batch import BatchServiceClient
from azure.batch.batch_auth import SharedKeyCredentials
from azure.batch import models
# Batch account credentials
AZ_BATCH_ACCOUNT = os.environ['AZ_BATCH_ACCOUNT_NAME']
AZ_BATCH_KEY = os.environ['AZ_BATCH_KEY']
AZ_BATCH_ENDPOINT = os.environ['AZ_BATCH_ENDPOINT']
# If you're using the authentication_token_settings for authentication
# you can use the AAD token in the environment variable AZ_BATCH_AUTHENTICATION_TOKEN.
def main():
# Batch Client
creds = SharedKeyCredentials(AZ_BATCH_ACCOUNT, AZ_BATCH_KEY)
batch_client = BatchServiceClient(creds, base_url=AZ_BATCH_ENDPOINT)
# You can set up the conditions under which your Job Manager will continue to add tasks here.
# It could be a timeout, max number of tasks, or you could monitor tasks to act on task status
condition = True
task_id = 0
task_params = {
"command_line": "/bin/bash -c 'echo hello world'",
# Any other task parameters go here.
}
while condition:
new_task = models.TaskAddParameter(id=task_id, **task_params)
batch_client.task.add(AZ_JOB, new_task)
task_id += 1
# Perform any additional log here - for example:
# - Check the status of the tasks, e.g. stdout, exit code etc
# - Process any output files for the tasks
# - Delete any completed tasks
# - Error handling for tasks that have failed
time.sleep(300) # Wait for 5 minutes (300 seconds)
# Job Manager task has completed - it will now exit and the job will be marked as complete.
if __name__ == '__main__':
main()
答案 1 :(得分:0)
job_spec = batchmodels.JobSpecification(
pool_info=pool_info,
job_manager_task=batchmodels.JobManagerTask(
id="JobManagerTask",
#specify the command that needs to run recurrently
command_line="/bin/bash -c \" python3 task.py\""
))
将要重复运行的任务作为JobManagerTask添加到JobSpecification中,如上所示。现在,此JobManagerTask将循环运行。