到N
点[(x_1,y_1), (x_2,y_2), ... ]
的列表我试图根据距离找到每个点的最近邻居。我的数据集太大而无法使用蛮力方法,所以KDtree看起来最好。
我没有从头开始实现,而是sklearn.neighbors.KDTree
可以找到最近的邻居。这可以用来找到每个粒子的最近邻居,即返回dim(N)
列表吗?
答案 0 :(得分:7)
这个问题非常广泛,缺少细节。目前还不清楚你做了什么,你的数据是什么样的,最近邻居是什么(身份?)。
假设您对身份(距离为0)不感兴趣,您可以查询两个最近邻居并删除第一列。这可能是最简单的方法。
import numpy as np
from sklearn.neighbors import KDTree
np.random.seed(0)
X = np.random.random((5, 2)) # 5 points in 2 dimensions
tree = KDTree(X)
nearest_dist, nearest_ind = tree.query(X, k=2) # k=2 nearest neighbors where k1 = identity
print(X)
print(nearest_dist[:, 1]) # drop id; assumes sorted -> see args!
print(nearest_ind[:, 1]) # drop id
[[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.4236548 0.64589411]
[ 0.43758721 0.891773 ]
[ 0.96366276 0.38344152]]
[ 0.14306129 0.1786471 0.14306129 0.20869372 0.39536284]
[2 0 0 0 1]
答案 1 :(得分:4)
您可以使用sklearn.neighbors.KDTree
的{{3}}方法,该方法返回某个半径范围内最近邻居的 indices 列表(而不是返回 k 最近邻居)。
from sklearn.neighbors import KDTree
points = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]
tree = KDTree(points, leaf_size=2)
all_nn_indices = tree.query_radius(points, r=1.5) # NNs within distance of 1.5 of point
all_nns = [[points[idx] for idx in nn_indices] for nn_indices in all_nn_indices]
for nns in all_nns:
print(nns)
输出:
[(1, 1), (2, 2)]
[(1, 1), (2, 2), (3, 3)]
[(2, 2), (3, 3), (4, 4)]
[(3, 3), (4, 4), (5, 5)]
[(4, 4), (5, 5)]
请注意,每个点都包含在给定半径内的最近邻居列表中。如果要删除这些标识点,可以将计算行all_nns
更改为:
all_nns = [
[points[idx] for idx in nn_indices if idx != i]
for i, nn_indices in enumerate(all_nn_indices)
]
导致:
[(2, 2)]
[(1, 1), (3, 3)]
[(2, 2), (4, 4)]
[(3, 3), (5, 5)]
[(4, 4)]
答案 2 :(得分:1)
sklearn应该是最好的。我写了一些下面的时间,我需要自定义距离。 (我猜sklearn不支持自定义距离fn 'KD tree' with custom distance metric。添加以供参考
根据我的要旨改编为2D https://gist.github.com/alexcpn/1f187f2114976e748f4d3ad38dea17e8
# From https://gist.github.com/alexcpn/1f187f2114976e748f4d3ad38dea17e8
# Author alex punnen
from collections import namedtuple
from operator import itemgetter
import numpy as np
def find_nearest_neighbour(node,point,distance_fn,current_axis):
# Algorith to find nearest neighbour in a KD Tree;the KD tree has done a spatial sort
# of the given co-ordinates, such that to the left of the root lies co-ordinates nearest to the x-axis
# and to the right of the root ,lies the co-ordinates farthest from the x axis
# On the y axis split on the left of the parent/root node lies co-ordinates nearest to the y-axis and to
# the right of the root, lies the co-ordinates farthest from the y axis
# to find the nearest neightbour, from the root, you first check left and right node; if distance is closer
# to the right node,then the entire left node can be discarded from search, because of the spatial split
# and that node becomes the root node. This process is continued recursively till the nearest is found
# param:node: The current node
# param: point: The point to which the nearest neighbour is to be found
# param: distance_fn: to calculate the nearest neighbour
# param: current_axis: here assuming only two dimenstion and current axis will be either x or y , 0 or 1
if node is None:
return None,None
current_closest_node = node
closest_known_distance = distance_fn(node.cell[0],node.cell[1],point[0],point[1])
print closest_known_distance,node.cell
x = (node.cell[0],node.cell[1])
y = point
new_node = None
new_closest_distance = None
if x[current_axis] > y[current_axis]:
new_node,new_closest_distance= find_nearest_neighbour(node.left_branch,point,distance_fn,
(current_axis+1) %2)
else:
new_node,new_closest_distance = find_nearest_neighbour(node.right_branch,point,distance_fn,
(current_axis+1) %2)
if new_closest_distance and new_closest_distance < closest_known_distance:
print 'Reset closest node to ',new_node.cell
closest_known_distance = new_closest_distance
current_closest_node = new_node
return current_closest_node,closest_known_distance
class Node(namedtuple('Node','cell, left_branch, right_branch')):
# This Class is taken from wikipedia code snippet for KD tree
pass
def create_kdtree(cell_list,current_axis,no_of_axis):
# Creates a KD Tree recursively following the snippet from wikipedia for KD tree
# but making it generic for any number of axis and changes in data strucure
if not cell_list:
return
# get the cell as a tuple list this is for 2 dimensions
k= [(cell[0],cell[1]) for cell in cell_list]
# say for three dimension
# k= [(cell[0],cell[1],cell[2]) for cell in cell_list]
k.sort(key=itemgetter(current_axis)) # sort on the current axis
median = len(k) // 2 # get the median of the list
axis = (current_axis + 1) % no_of_axis # cycle the axis
return Node(k[median], # recurse
create_kdtree(k[:median],axis,no_of_axis),
create_kdtree(k[median+1:],axis,no_of_axis))
def eucleaden_dist(x1,y1,x2,y2):
a= np.array([x1,y1])
b= np.array([x2,y2])
dist = np.linalg.norm(a-b)
return dist
np.random.seed(0)
#cell_list = np.random.random((2, 2))
#cell_list = cell_list.tolist()
cell_list = [[2,2],[4,8],[10,2]]
print(cell_list)
tree = create_kdtree(cell_list,0,2)
node,distance = find_nearest_neighbour(tree,(1, 1),eucleaden_dist,0)
print 'Nearest Neighbour=',node.cell,distance
node,distance = find_nearest_neighbour(tree,(8, 1),eucleaden_dist,0)
print 'Nearest Neighbour=',node.cell,distance
答案 3 :(得分:0)
我实现了this problem的解决方案,我认为这可能会有所帮助。
from collections import namedtuple
from operator import itemgetter
from pprint import pformat
from math import inf
def nested_getter(idx1, idx2):
def g(obj):
return obj[idx1][idx2]
return g
class Node(namedtuple('Node', 'location left_child right_child')):
def __repr__(self):
return pformat(tuple(self))
def kdtree(point_list, depth: int = 0):
if not point_list:
return None
k = len(point_list[0]) # assumes all points have the same dimension
# Select axis based on depth so that axis cycles through all valid values
axis = depth % k
# Sort point list by axis and choose median as pivot element
point_list.sort(key=nested_getter(1, axis))
median = len(point_list) // 2
# Create node and construct subtrees
return Node(
location=point_list[median],
left_child=kdtree(point_list[:median], depth + 1),
right_child=kdtree(point_list[median + 1:], depth + 1)
)
def nns(q, n, p, w, depth: int = 0):
"""
NNS = Nearest Neighbor Search
:param depth:
:param q: point
:param n: node
:param p: ref point
:param w: ref distance
:return: new_p, new_w
"""
new_w = distance(q[1], n.location[1])
# below we test if new_w > 0 because we don't want to allow p = q
if (new_w > 0) and new_w < w:
p, w = n.location, new_w
k = len(p)
axis = depth % k
n_value = n.location[1][axis]
search_left_first = (q[1][axis] <= n_value)
if search_left_first:
if n.left_child and (q[1][axis] - w <= n_value):
new_p, new_w = nns(q, n.left_child, p, w, depth + 1)
if new_w < w:
p, w = new_p, new_w
if n.right_child and (q[1][axis] + w >= n_value):
new_p, new_w = nns(q, n.right_child, p, w, depth + 1)
if new_w < w:
p, w = new_p, new_w
else:
if n.right_child and (q[1][axis] + w >= n_value):
new_p, new_w = nns(q, n.right_child, p, w, depth + 1)
if new_w < w:
p, w = new_p, new_w
if n.left_child and (q[1][axis] - w <= n_value):
new_p, new_w = nns(q, n.left_child, p, w, depth + 1)
if new_w < w:
p, w = new_p, new_w
return p, w
def main():
"""Example usage of kdtree"""
point_list = [(7, 2), (5, 4), (9, 6), (4, 7), (8, 1), (2, 3)]
tree = kdtree(point_list)
print(tree)
def city_houses():
"""
Here we compute the distance to the nearest city from a list of N cities.
The first line of input contains N, the number of cities.
Each of the next N lines contain two integers x and y, which locate the city in (x,y),
separated by a single whitespace.
It's guaranteed that a spot (x,y) does not contain more than one city.
The output contains N lines, the line i with a number representing the distance
for the nearest city from the i-th city of the input.
"""
n = int(input())
cities = []
for i in range(n):
city = i, tuple(map(int, input().split(' ')))
cities.append(city)
# print(cities)
tree = kdtree(cities)
# print(tree)
ans = [(target[0], nns(target, tree, tree.location, inf)[1]) for target in cities]
ans.sort(key=itemgetter(0))
ans = [item[1] for item in ans]
print('\n'.join(map(str, ans)))
def distance(a, b):
# Taxicab distance is used below. You can use squared euclidean distance if you prefer
k = len(b)
total = 0
for i in range(k):
total += abs(b[i] - a[i])
return total
if __name__ == '__main__':
city_houses()