在给定我的数据集的情况下,我使用以下代码通过MLPClassifier拟合模型:
tr_X, ts_X, tr_y, ts_y = train_test_split(X, y, train_size=.8)
model = MLPClassifier(hidden_layer_sizes=(32, 32),
activation='relu',
solver=adam,
learning_rate='adaptive',
early_stopping=True)
model.fit(tr_X, tr_y)
prd_r = model.predict(ts_X)
test_acc = accuracy_score(ts_y, prd_r) * 100.
loss_values = model.estimator.loss_curve_
print (loss_values)
如上所示,可以通过调用loss_curve_
来返回损失列表来获取每批的损失值。我明白了:
[0.69411586222116872, 0.6923803442491846, 0.66657293575365906, 0.43212054205535255, 0.23119813830216157, 0.15497928755966919, 0.11799652235604828, 0.095235784011297939, 0.079951427356068624, 0.069012741113626194, 0.061282868601098078, 0.054871864138797251, 0.049835046972801049, 0.046056362860260207, 0.042823979794540182, 0.040681220899240651, 0.038262366774481374, 0.036256840660697079, 0.034418333946277503, 0.033547227978657508, 0.03285581956914093, 0.031671266419493666, 0.030941451221456757]
我想将这些结果绘制成代表此模型中的loss curve
。问题是我不知道x-axis
和y-axis
在这种情况下会是什么。如果我将y-axis
作为这些损失值,那么x-axis
应该是什么来显示损失曲线是减少还是增加?
任何提示或想法都表示赞赏。
答案 0 :(得分:6)
plot()
命令过载,并且不需要x轴。如果您只是传入loss_curve_
,则默认的x轴将是绘制的y值列表中的相应索引。例如,如果我们运行
import matplotlib.pyplot as plt
plt.plot(loss_values)
plt.show()
然后我们得到以下图表:
答案 1 :(得分:3)
让我们根据迭代时间来演示拉伸损失和精度。
import numpy as np
import matplotlib.pyplot as plt
def draw_result(lst_iter, lst_loss, lst_acc, title):
plt.plot(lst_iter, lst_loss, '-b', label='loss')
plt.plot(lst_iter, lst_acc, '-r', label='accuracy')
plt.xlabel("n iteration")
plt.legend(loc='upper left')
plt.title(title)
# save image
plt.savefig(title+".png") # should before show method
# show
plt.show()
def test_draw():
# iteration num
lst_iter = range(100)
# loss of iteration
lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
# lst_loss = np.random.randn(1, 100).reshape((100, ))
# accuracy of iteration
lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
# lst_acc = np.random.randn(1, 100).reshape((100, ))
draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")
if __name__ == '__main__':
test_draw()
输出如下: