有没有办法在Python 3.6中通过scipy
或librosa
为16KHz wav文件创建快速带通滤波器,以滤除300-3400Hz人类语音频段之外的噪音?这是一个sample wav file,背景噪音很低。
更新: 是的,我已经看过/试过了How to implement band-pass Butterworth filter with Scipy.signal.butter。不幸的是,过滤后的声音非常变形。从本质上讲,整个代码都是这样做的:
lo,hi=300,3400
sr,y=wavfile.read(wav_file)
b,a=butter(N=6, Wn=[2*lo/sr, 2*hi/sr], btype='band')
x = lfilter(b,a,y)
sounddevice.play(x, sr) # playback
我做错了什么或如何改进,以便正确滤除背景噪音。
以下是使用上述链接显示原始文件和已过滤文件的信息。可视化看起来很合理,但听起来很可怕:(如何解决这个问题?
答案 0 :(得分:3)
显然,在写入非标准化的64位浮点数据时会出现问题。通过将x
转换为16位或32位整数,或通过将x
归一化到范围[-1,1]并转换为32浮点,我得到一个合理的输出文件。
我没有使用sounddevice
;相反,我将过滤后的数据保存到新的WAV文件并播放。以下是适用于我的变体:
# Convert to 16 integers
wavfile.write('off_plus_noise_filtered.wav', sr, x.astype(np.int16))
...或
# Convert to 32 bit integers
wavfile.write('off_plus_noise_filtered.wav', sr, x.astype(np.int32))
...或
# Convert to normalized 32 bit floating point
normalized_x = x / np.abs(x).max()
wavfile.write('off_plus_noise_filtered.wav', sr, normalized_x.astype(np.float32))
输出整数时,可以放大这些值,以最大限度地减少因截断浮点值而导致的精度损失:
x16 = (normalized_x * (2**15-1)).astype(np.int16)
wavfile.write('off_plus_noise_filtered.wav', sr, x16)
答案 1 :(得分:1)
以下代码用于从此处生成带通滤波器:https://scipy.github.io/old-wiki/pages/Cookbook/ButterworthBandpass
from scipy.signal import butter, lfilter
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
if __name__ == "__main__":
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import freqz
# Sample rate and desired cutoff frequencies (in Hz).
fs = 5000.0
lowcut = 500.0
highcut = 1250.0
# Plot the frequency response for a few different orders.
plt.figure(1)
plt.clf()
for order in [3, 6, 9]:
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
w, h = freqz(b, a, worN=2000)
plt.plot((fs * 0.5 / np.pi) * w, abs(h), label="order = %d" % order)
plt.plot([0, 0.5 * fs], [np.sqrt(0.5), np.sqrt(0.5)],
'--', label='sqrt(0.5)')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain')
plt.grid(True)
plt.legend(loc='best')
# Filter a noisy signal.
T = 0.05
nsamples = T * fs
t = np.linspace(0, T, nsamples, endpoint=False)
a = 0.02
f0 = 600.0
x = 0.1 * np.sin(2 * np.pi * 1.2 * np.sqrt(t))
x += 0.01 * np.cos(2 * np.pi * 312 * t + 0.1)
x += a * np.cos(2 * np.pi * f0 * t + .11)
x += 0.03 * np.cos(2 * np.pi * 2000 * t)
plt.figure(2)
plt.clf()
plt.plot(t, x, label='Noisy signal')
y = butter_bandpass_filter(x, lowcut, highcut, fs, order=6)
plt.plot(t, y, label='Filtered signal (%g Hz)' % f0)
plt.xlabel('time (seconds)')
plt.hlines([-a, a], 0, T, linestyles='--')
plt.grid(True)
plt.axis('tight')
plt.legend(loc='upper left')
plt.show()
看看这是否有助于您的事业。 你可以在这里指定所需的频率:
# Sample rate and desired cutoff frequencies (in Hz).
fs = 5000.0
lowcut = 500.0
highcut = 1250.0