如何使用不断变化的值对数据帧进行一致的热编码?

时间:2017-12-30 12:40:55

标签: python pandas scikit-learn one-hot-encoding

我以数据框的形式获取内容流,每个批次在列中具有不同的值。 例如,一个批次可能如下所示:

day1_data = {'state': ['MS', 'OK', 'VA', 'NJ', 'NM'], 
            'city': ['C', 'B', 'G', 'Z', 'F'], 
            'age': [27, 19, 63, 40, 93]}

和另一个像:

day2_data = {'state': ['AL', 'WY', 'VA'], 
            'city': ['A', 'B', 'E'], 
            'age': [42, 52, 73]}

如何以返回一致数量的列的方式对列进行热编码?

如果我在每个批次上使用pandas的get_dummies(),它会返回不同数量的列:

df1 = pd.get_dummies(pd.DataFrame(day1_data))
df2 = pd.get_dummies(pd.DataFrame(day2_data))

len(df1.columns) == len(df2.columns)

我可以获得每列的所有可能值,问题是即使使用该信息,每个批次生成一个热编码的最简单方法是什么,因此列数将保持一致?

1 个答案:

答案 0 :(得分:2)

好的,因为所有可能的值都是事先知道的。然后,下面是一个略微hackish做的方式。

import numpy as np
import pandas as pd

# This is a one time process
# Keep all the possible data here in lists
# Can add other categorical variables too which have this type of data
all_possible_states=  ['AL', 'MS', 'MS', 'OK', 'VA', 'NJ', 'NM', 'CD', 'WY']
all_possible_cities= ['A', 'B', 'C', 'D', 'E', 'G', 'Z', 'F']

# Declare our transformer class
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import LabelEncoder, OneHotEncoder

class MyOneHotEncoder(BaseEstimator, TransformerMixin):

    def __init__(self, all_possible_values):
        self.le = LabelEncoder()
        self.ohe = OneHotEncoder()
        self.ohe.fit(self.le.fit_transform(all_possible_values).reshape(-1,1))

    def transform(self, X, y=None):
        return self.ohe.transform(self.le.transform(X).reshape(-1,1)).toarray()

# Allow the transformer to see all the data here
encoders = {}
encoders['state'] = MyOneHotEncoder(all_possible_states)
encoders['city'] = MyOneHotEncoder(all_possible_cities)
# Do this for all categorical columns

# Now this is our method which will be used on the incoming data 
def encode(df):

    tup = (encoders['state'].transform(df['state']), 
           encoders['city'].transform(df['city']),
           # Add all other columns which are not to be transformed
           df[['age']])

    return np.hstack(tup)

# Testing:
day1_data = pd.DataFrame({'state': ['MS', 'OK', 'VA', 'NJ', 'NM'], 
        'city': ['C', 'B', 'G', 'Z', 'F'], 
        'age': [27, 19, 63, 40, 93]})

print(encode(day1_data))
[[  0.   0.   1.   0.   0.   0.   0.   0.   0.   0.   1.   0.   0.   0.
    0.   0.  27.]
 [  0.   0.   0.   0.   0.   1.   0.   0.   0.   1.   0.   0.   0.   0.
    0.   0.  19.]
 [  0.   0.   0.   0.   0.   0.   1.   0.   0.   0.   0.   0.   0.   0.
    1.   0.  63.]
 [  0.   0.   0.   1.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.   1.  40.]
 [  0.   0.   0.   0.   1.   0.   0.   0.   0.   0.   0.   0.   0.   1.
    0.   0.  93.]]


day2_data = pd.DataFrame({'state': ['AL', 'WY', 'VA'], 
            'city': ['A', 'B', 'E'], 
            'age': [42, 52, 73]})

print(encode(day2_data))
[[  1.   0.   0.   0.   0.   0.   0.   0.   1.   0.   0.   0.   0.   0.
    0.   0.  42.]
 [  0.   0.   0.   0.   0.   0.   0.   1.   0.   1.   0.   0.   0.   0.
    0.   0.  52.]
 [  0.   0.   0.   0.   0.   0.   1.   0.   0.   0.   0.   0.   1.   0.
    0.   0.  73.]]

请仔细阅读评论,如果还有任何问题,请问我。