如何使用data.table对热量编码因子变量?

时间:2016-10-06 21:22:00

标签: r data.table

对于那些不熟悉的,单热编码仅指将一列类别(即因子)转换为多列二进制指示符变量,其中每个新列对应于原始列的一个类。这个例子将更好地解释它:

dt <- data.table(
  ID=1:5, 
  Color=factor(c("green", "red", "red", "blue", "green"), levels=c("blue", "green", "red", "purple")),
  Shape=factor(c("square", "triangle", "square", "triangle", "cirlce"))
)

dt
   ID Color    Shape
1:  1 green   square
2:  2   red triangle
3:  3   red   square
4:  4  blue triangle
5:  5 green   cirlce

# one hot encode the colors
color.binarized <- dcast(dt[, list(V1=1, ID, Color)], ID ~ Color, fun=sum, value.var="V1", drop=c(TRUE, FALSE))

# Prepend Color_ in front of each one-hot-encoded feature
setnames(color.binarized, setdiff(colnames(color.binarized), "ID"), paste0("Color_", setdiff(colnames(color.binarized), "ID")))

# one hot encode the shapes
shape.binarized <- dcast(dt[, list(V1=1, ID, Shape)], ID ~ Shape, fun=sum, value.var="V1", drop=c(TRUE, FALSE))

# Prepend Shape_ in front of each one-hot-encoded feature
setnames(shape.binarized, setdiff(colnames(shape.binarized), "ID"), paste0("Shape_", setdiff(colnames(shape.binarized), "ID")))

# Join one-hot tables with original dataset
dt <- dt[color.binarized, on="ID"]
dt <- dt[shape.binarized, on="ID"]

dt
   ID Color    Shape Color_blue Color_green Color_red Color_purple Shape_cirlce Shape_square Shape_triangle
1:  1 green   square          0           1         0            0            0            1              0
2:  2   red triangle          0           0         1            0            0            0              1
3:  3   red   square          0           0         1            0            0            1              0
4:  4  blue triangle          1           0         0            0            0            0              1
5:  5 green   cirlce          0           1         0            0            1            0              0

这是我做了很多事情,你可以看到它非常乏味(特别是当我的数据有很多因子列时)。使用data.table有更简单的方法吗?特别是,我假设dcast允许我一次热编码多个列,当我尝试做类似的事情时

dcast(dt[, list(V1=1, ID, Color, Shape)], ID ~ Color + Shape, fun=sum, value.var="V1", drop=c(TRUE, FALSE))

我得到了列组合

   ID blue_cirlce blue_square blue_triangle green_cirlce green_square green_triangle red_cirlce red_square red_triangle purple_cirlce purple_square purple_triangle
1:  1           0           0             0            0            1              0          0          0            0             0             0               0
2:  2           0           0             0            0            0              0          0          0            1             0             0               0
3:  3           0           0             0            0            0              0          0          1            0             0             0               0
4:  4           0           0             1            0            0              0          0          0            0             0             0               0
5:  5           0           0             0            1            0              0          0          0            0             0             0               0

5 个答案:

答案 0 :(得分:10)

你走了:

dcast(melt(dt, id.vars='ID'), ID ~ variable + value, fun = length)
#   ID Color_blue Color_green Color_red Shape_cirlce Shape_square Shape_triangle
#1:  1          0           1         0            0            1              0
#2:  2          0           0         1            0            0              1
#3:  3          0           0         1            0            1              0
#4:  4          1           0         0            0            0              1
#5:  5          0           1         0            1            0              0

要获得缺失的因素,您可以执行以下操作:

res = dcast(melt(dt, id = 'ID', value.factor = T), ID ~ value, drop = F, fun = length)
setnames(res, c("ID", unlist(lapply(2:ncol(dt),
                             function(i) paste(names(dt)[i], levels(dt[[i]]), sep = "_")))))
res
#   ID Color_blue Color_green Color_red Color_purple Shape_cirlce Shape_square Shape_triangle
#1:  1          0           1         0            0            0            1              0
#2:  2          0           0         1            0            0            0              1
#3:  3          0           0         1            0            0            1              0
#4:  4          1           0         0            0            0            0              1
#5:  5          0           1         0            0            1            0              0

答案 1 :(得分:7)

使用model.matrix

> cbind(dt[, .(ID)], model.matrix(~ Color + Shape, dt))
   ID (Intercept) Colorgreen Colorred Colorpurple Shapesquare Shapetriangle
1:  1           1          1        0           0           1             0
2:  2           1          0        1           0           0             1
3:  3           1          0        1           0           1             0
4:  4           1          0        0           0           0             1
5:  5           1          1        0           0           0             0

如果您正在进行建模,这将是最有意义的。

如果要抑制截距(并恢复第一个变量的别名列):

> cbind(dt[, .(ID)], model.matrix(~ Color + Shape - 1, dt))
   ID Colorblue Colorgreen Colorred Colorpurple Shapesquare Shapetriangle
1:  1         0          1        0           0           1             0
2:  2         0          0        1           0           0             1
3:  3         0          0        1           0           1             0
4:  4         1          0        0           0           0             1
5:  5         0          1        0           0           0             0

答案 2 :(得分:5)

这是eddi解决方案的更通用版本:

one_hot <- function(dt, cols="auto", dropCols=TRUE, dropUnusedLevels=FALSE){
  # One-Hot-Encode unordered factors in a data.table
  # If cols = "auto", each unordered factor column in dt will be encoded. (Or specifcy a vector of column names to encode)
  # If dropCols=TRUE, the original factor columns are dropped
  # If dropUnusedLevels = TRUE, unused factor levels are dropped

  # Automatically get the unordered factor columns
  if(cols[1] == "auto") cols <- colnames(dt)[which(sapply(dt, function(x) is.factor(x) & !is.ordered(x)))]

  # Build tempDT containing and ID column and 'cols' columns
  tempDT <- dt[, cols, with=FALSE]
  tempDT[, ID := .I]
  setcolorder(tempDT, unique(c("ID", colnames(tempDT))))
  for(col in cols) set(tempDT, j=col, value=factor(paste(col, tempDT[[col]], sep="_"), levels=paste(col, levels(tempDT[[col]]), sep="_")))

  # One-hot-encode
  if(dropUnusedLevels == TRUE){
    newCols <- dcast(melt(tempDT, id = 'ID', value.factor = T), ID ~ value, drop = T, fun = length)
  } else{
    newCols <- dcast(melt(tempDT, id = 'ID', value.factor = T), ID ~ value, drop = F, fun = length)
  }

  # Combine binarized columns with the original dataset
  result <- cbind(dt, newCols[, !"ID"])

  # If dropCols = TRUE, remove the original factor columns
  if(dropCols == TRUE){
    result <- result[, !cols, with=FALSE]
  }

  return(result)
}

请注意,对于大型数据集,最好使用Matrix::sparse.model.matrix

更新(2017)

现在位于mltools包中。

答案 3 :(得分:1)

如果没有人发布干净的方式每次手动写出来,你总是可以创建一个函数/宏:

OHE <- function(dt, grp, encodeCols) {
        grpSymb = as.symbol(grp)
        for (col in encodeCols) {
                colSymb = as.symbol(col)
                eval(bquote(
                            dt[, .SD
                               ][, V1 := 1
                               ][, dcast(.SD, .(grpSymb) ~ .(colSymb), fun=sum, value.var='V1')
                               ][, setnames(.SD, setdiff(colnames(.SD), grp), sprintf("%s_%s", col, setdiff(colnames(.SD), grp)))
                               ][, dt <<- dt[.SD, on=grp]
                               ]
                            ))
        }
        dt
}

dtOHE = OHE(dt, 'ID', c('Color', 'Shape'))
dtOHE

   ID Color    Shape Color_blue Color_green Color_red Shape_cirlce Shape_square Shape_triangle
1:  1 green   square          0           1         0            0            1              0
2:  2   red triangle          0           0         1            0            0              1
3:  3   red   square          0           0         1            0            1              0
4:  4  blue triangle          1           0         0            0            0              1
5:  5 green   cirlce          0           1         0            1            0              0

答案 4 :(得分:0)

在几行中你可以解决这个问题:

library(tidyverse)
dt2 <- spread(dt,Color,Shape)
dt3 <- spread(dt,Shape,Color)

df <- cbind(dt2,dt3)

df2 <- apply(df, 2, function(x){sapply(x, function(y){
  ifelse(is.na(y),0,1)
})})

df2 <- as.data.frame(df2)

df <- cbind(dt,df2[,-1])

table image