我正在使用以下数据集:
@MessagingGateway
我想总结一下所有的编程语言。 输出应如下所示:
| Country | HaveWorkedLanguage
1 | United States | Swift
2 | United States | Python
3 | Austria | JavaScript
4 | Austria | JavaScript
5 | United States | Swift
我已经玩过 | Country | HaveWorkedLanguage | Frequency
1 | United States | Swift | 2
2 | United States | Python | 1
3 | Austria | JavaScript | 2
,但无法做到正确。
答案 0 :(得分:1)
使用dplyr
库
df %>% group_by(Country,HaveWorkedLanguage) %>%
dplyr::summarize(Frequency=n()) %>%
as.data.frame()
答案 1 :(得分:0)
使用data.table
,您执行count
和group by
,然后执行unique
: -
df <- data.table(Country = c("United States", "United States", "Austria", "Austria", "United States"), HaveWorkedLanguage = c("Swift", "Python", "JavaScript", "JavaScript", "Swift"))
df[, Frequency := .N, by = c("Country", "HaveWorkedLanguage")]
df <- unique(df)
它会为您提供所需的输出: -
Country HaveWorkedLanguage Frequency
1: United States Swift 2
2: United States Python 1
3: Austria JavaScript 2
答案 2 :(得分:0)
使用'dplyr'使这个过程变得直观。首先'group_by'你想要总结的东西,然后按如下方式执行摘要:
{{1}}