据我所知,.agg可以很容易地用于计算平均值。例如,如果我有一个数据框df:
df
one two three
A 1 2 3
B 4 5 6
C 7 8 9
我想计算每列的平均值,我可以这样做:
df.agg(np.average)
one 4.0
two 5.0
three 6.0
dtype: float64
现在,让我们说我只对“一个”的平均值感兴趣。直观地说,我这样写,我期待一个数字4:
df.agg({'one':np.average}) #or df['one'].agg(np.average)
但是,它不是4,而是返回第一列:
one
A 1.0
B 4.0
C 7.0
为什么?
答案 0 :(得分:2)
你有很多方法可以做到这一点,你似乎偶然发现了不工作的唯一方法。这些都适合我:
df["one"].agg("mean")
df.agg({"one": "mean"})
df["one"].agg(np.mean)
df.agg({"one": np.mean})
查看源代码,看来当您使用average
时,它会将DataFrame
强制转换为numpy array
,然后mean
占用该行 - 明智的平均值。因为在基本情况下(没有权重)average
实际上会调用mean
。
见
def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
kwargs = {}
if keepdims is not np._NoValue:
kwargs['keepdims'] = keepdims
if type(a) is not mu.ndarray:
try:
mean = a.mean
except AttributeError:
pass
else:
return mean(axis=axis, dtype=dtype, out=out, **kwargs)
return _methods._mean(a, axis=axis, dtype=dtype,
out=out, **kwargs)
和
def average(a, axis=None, weights=None, returned=False):
if (type(a) not in (np.ndarray, np.matrix) and
issubclass(type(a), np.ndarray)):
warnings.warn("np.average currently does not preserve subclasses, but "
"will do so in the future to match the behavior of most "
"other numpy functions such as np.mean. In particular, "
"this means calls which returned a scalar may return a "
"0-d subclass object instead.",
FutureWarning, stacklevel=2)
if not isinstance(a, np.matrix):
a = np.asarray(a)
if weights is None:
avg = a.mean(axis)
scl = avg.dtype.type(a.size/avg.size)
else:
...