我的神经网络没有提高其准确性

时间:2017-12-23 21:39:46

标签: python tensorflow machine-learning neural-network deep-learning

我正在训练神经网络使用notMNIST数据集识别字符,但是一旦我运行它,它的精确度在每次迭代后保持相对恒定。

我尝试过降低学习率,但没有任何不同。可能是什么问题?

我认为问题可能在于tf.nn.relu()方法的实现,以及我如何计算预测,因为我在Tensor Flow和神经网络上相当新鲜

以下是我运行的程序的屏幕截图,您可以看到训练集,验证集和测试集的准确性都很差

enter image description here

num_steps=801

def accuracy(predictions, labels):
    return (100.0 * np.sum(np.argmax(predictions,1) == np.argmax(labels,1))
        / predictions.shape[0])

with tf.Session(graph=graph) as session:
    #this is a one-time operation which ensure the parameters get initialized
    #we described in the graph: random weights for the matrix, zeros for the
    #biases.
    tf.global_variables_initializer().run()
    print("initialized")
    for step in range(num_steps):
        #run the computations. we tell .run() that we  want to run the optimizer,
        #and get the loss value and the training predictions returned as numpy
        #arrays.
        _, l, predictions = session.run([optimizer,loss, train_prediction])
        if (step % 100 ==0):
            print("loss at step %d: %f" % (step,l))
            print("Training accuracy: %.1f%%" % accuracy(
                predictions, train_labels[:train_subset,:]))
            #calling .eval() on valid_prediction is basically like calling run(), but
            #just to get that one numpy array. Note that it recomputes all its graph
            #dependencies.
            print("Validation accuracy: %.1f%%" % accuracy(
                valid_prediction.eval(), valid_labels))
            print("test accuracy: %.1f%%" % accuracy(test_prediction.eval(),test_labels))

batch_size = 128
hidden_nodes = 1024
graph = tf.Graph()
with graph.as_default():
    #input data. For the training data, we use a placeholder that will be fed
    #at run time with a training minibatch
    tf_train_dataset = tf.placeholder(tf.float32,
                                    shape=(batch_size, image_size*image_size), name="td")
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels), name="tl")
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)

    #variables
    weights1 = tf.Variable(
        tf.truncated_normal([image_size*image_size, hidden_nodes]))
    biases1 = tf.Variable(tf.zeros([hidden_nodes]))
    weights2 =tf.Variable(
        tf.truncated_normal([hidden_nodes, num_labels]))
    biases2 = tf.Variable(tf.zeros([num_labels]))

    #training computation.
    relu1 = tf.nn.relu(tf.matmul(tf_train_dataset, weights1) + biases1)
    relu_out= tf.nn.relu(tf.matmul(relu1, weights2) + biases2)

    loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits=relu_out,labels=tf_train_labels))

    #optimizer
    optimizer = tf.train.GradientDescentOptimizer(0.25).minimize(loss)

    #predictions for the training, validation, and test data
    train_prediction = relu_out
    valid_prediction = tf.nn.relu(tf.matmul(tf.nn.relu(tf.matmul(tf_valid_dataset, weights1) + biases1), weights2) + biases2) 
    test_prediction = tf.nn.relu(tf.matmul(tf.nn.relu(tf.matmul(tf_test_dataset, weights1) + biases1), weights2) + biases2)

num_steps = 3001

with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print("initialized")
    for step in range(num_steps):
        #pick an offset within the training data, which has been randomized.
        #note: we could use better randomization across epochs.
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        #generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        #prepare a dictionary telling the session where to feed the minibatch.
        #the key of the dictionary is the placeholder node of the graph to be fed,
        #and the value is the numpy array to feed to it
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print("minibatch loss at step %d: %f" % (step,l))
            print("minibatch accuracy: %.1f%%" % accuracy(predictions,batch_labels))
            print("validation accuracy: %.1f%%" % accuracy(
                valid_prediction.eval(), valid_labels))
            print("test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))

1 个答案:

答案 0 :(得分:0)

正如我所想,问题是relu()方法的实现。

在计算部分,我使用relu()2次,我应该只使用它一次。改变后,它看起来像这样。

logits_1 = tf.matmul(tf_train_dataset, weights1) + biases1
relu1 = tf.nn.relu(logits_1)
logits_2 = tf.matmul(relu1, weights2) + biases2

我将损失变量中的参数logits从relu_out更改为logits_2。

loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits=logits_2,labels=tf_train_labels))

最后我更改了预测变量,以便使用logits_2而不是relu_out进行计算。

train_prediction = tf.nn.softmax(logits_2)
    valid_prediction = tf.nn.softmax(
        tf.matmul(tf.nn.relu(tf.matmul(tf_valid_dataset,weights1) +biases1), weights2) + biases2)
    test_prediction = tf.nn.softmax(
        tf.matmul(tf.nn.relu(tf.matmul(tf_test_dataset, weights1) + biases1), weights2) + biases2)

正如您所看到的,准确率上升了大约90%

enter image description here

虽然我还不确定为什么两次实现relu()方法是一个问题。如果我没错,relu()方法会返回0或它给出的参数的值,所以不应该是相同的吗?

如果有人知道随时回答