我试图在没有延迟构造函数的情况下定义CoList
。我遇到了一个问题,我使用with表达式,但agda没有细化子类型的类型。
module Failing where
open import Data.Unit
open import Data.Empty
open import Data.Maybe
open import Data.Nat
open import Data.Vec hiding (head ; tail ; map ; take)
record CoList (A : Set) : Set where
coinductive
field
head : Maybe A
tail : maybe (λ _ → ⊤) ⊥ head -> CoList A
open CoList
nil : ∀ {A} -> CoList A
head nil = nothing
tail nil ()
cons : ∀ {A} -> A -> CoList A -> CoList A
head (cons x xs) = just x
tail (cons x xs) tt = xs
take : ∀ {A} -> CoList A -> (n : ℕ) -> Maybe (Vec A n)
take l zero = just []
take l (suc n) with head l
... | nothing = nothing
... | just x = map (λ xs → x ∷ xs) (take (tail l {!!}) n)
该洞的类型是maybe (λ _ → ⊤) ⊥ (head l)
,但由于带有表达式,我希望该类型为⊤
。我希望这是因为我在head l
并且在那种情况下使用了head l = just x
。如果我尝试使用tt
agda模式填充整体,则会出现以下错误:
⊤ !=< (maybe (λ _ → ⊤) ⊥ (head l)) of type Set
when checking that the expression tt has type
(maybe (λ _ → ⊤) ⊥ (head l))
我回答了下面的问题,所以现在我很好奇是否有更好的方法来编码此列表而没有延迟构造函数?
答案 0 :(得分:3)
在函数参数和目标的类型中,您可以将with t
视为替换t
与您匹配的任何内容。但是,当您执行head l
时,with
不会出现在您的目标类型中 - 一旦您部分构建了解决方案,其类型涉及head l
的目标只会在稍后出现。这就是您的初始尝试不起作用的原因。
如你的答案所示,inspect
成语确实是解决此类问题的常用方法。
对于具有“多个构造函数”的共同类型的编码,我知道有两种(密切相关的)方法:
互感/共感类型:
data CoList′ (A : Set) : Set
record CoList (A : Set) : Set
data CoList′ A where
[] : CoList′ A
_∷_ : A → CoList A → CoList′ A
record CoList A where
coinductive
field
unfold : CoList′ A
open CoList
repeat : ∀ {A} → A → CoList A
repeat x .unfold = x ∷ repeat x
take : ∀ {A} → ℕ → CoList A → List A
take zero _ = []
take (suc n) xs with unfold xs
... | [] = []
... | x ∷ xs′ = x ∷ take n xs′
明确地使用cofixpoint:
data CoList′ (A : Set) (CoList : Set) : Set where
[] : CoList′ A CoList
_∷_ : A → CoList → CoList′ A CoList
record CoList (A : Set) : Set where
coinductive
field
unfold : CoList′ A (CoList A)
open CoList
repeat : ∀ {A} → A → CoList A
repeat x .unfold = x ∷ repeat x
take : ∀ {A} → ℕ → CoList A → List A
take zero _ = []
take (suc n) xs with unfold xs
... | [] = []
... | x ∷ xs′ = x ∷ take n xs′
答案 1 :(得分:2)
我找到的一个解决方案是使用检查习语。显然,在agda的抽象中,不要传播平等。 inspect成语使得平等显而易见。
data Uncons (A : Set) : Set where
Nil : Uncons A
Cons : A -> CoList A -> Uncons A
uncons : ∀ {A} -> CoList A -> Uncons A
uncons l with head l | inspect head l
uncons l | nothing | _ = Nil
uncons l | just x | [ p ] = Cons x (tail l (subst (maybe (λ _ -> ⊤) ⊥) (sym p) tt))
take : ∀ {A} -> CoList A -> (n : ℕ) -> Maybe (Vec A n)
take l zero = just []
take l (suc n) with uncons l
... | Nil = nothing
... | Cons x xs = map (λ rest → x ∷ rest) (take xs n)