从给定范围中删除给定数字集的所有倍数

时间:2017-12-23 05:50:31

标签: algorithm data-structures numbers

我遇到了一个问题,它给出了一个N数字和一组数字,S = {s1,s2,.....sn} s1 < s2 < sn < N,删除{s1, s2,....sn}的所有倍数来自范围1..N

示例:

Let N = 10
S = {2,4,5}
Output: {1, 7, 9}
Explanation: multiples of 2 within range: 2, 4, 6, 8
             multiples of 4 within range: 4, 8
             multiples of 5 within range: 5, 10 

我想有一种算法方法,即伪代码而不是完整的解决方案。

我尝试了什么:

(Considering the same example as above) 

 1. For the given N, find all the prime factors of that number.
    Therefore, for 10, prime-factors are: 2,3,5,7
    In the given set, S = {2,4,5}, the prime-factors missing from 
    {2,3,5,7} are {3,7}.  
 2. First, check prime-factors that are present: {2,5}
    Hence, all the multiples of them will be removed 
    {2,4,5,6,8,10}
 3. Check for non-prime numbers in S = {4}
 4. Check, if any divisor of these numbers has already been 
    previously processed.
         > In this case, 2 is already processed.
         > Hence no need to process 4, as all the multiples of 4 
           would have been implicitly checked by the previous 
           divisor.
    If not,
         > Remove all the multiples from this range.
 5. Repeat for all the remaining non primes in the set.

请提出您的想法!

3 个答案:

答案 0 :(得分:4)

可以使用类似于Eratosthenes筛子的东西在O(N log(n))时间和O(N)额外内存中解决它。

isMultiple[1..N] = false

for each s in S:
    t = s
    while t <= N:
        isMultiple[t] = true
        t += s

for i in 1..N:
    if not isMultiple[i]:
        print i

这使用O(N)内存来存储isMultiple数组。

时间复杂度为O(N log(n))。实际上,对于S中的第一个元素,内部while循环将执行N / s 1 次,然后对于第二个元素执行N / s 2 ,依此类推。

我们需要估计N / s 1 + N / s 2 + ... + N / s n 的幅度。

N / s 1 + N / s 2 + ... + N / s n  = N *(1 / s 1 + 1 / s 2 + ... + 1 / s n )&lt; = N *( 1/1 + 1/2 + ... + 1 / n)。

最后的不等式是由于s 1 &lt; s 2 &lt; ... &LT; s n ,因此最坏的情况是它们取值{1,2,... n}。

然而,谐波系列1/1 + 1/2 + ... + 1 / n在O(log(n))中,(例如this),因此,上述算法的时间复杂度为O(N log(n))。

答案 1 :(得分:1)

基本解决方案:

let set X be our output set.

for each number, n, between 1 and N:
    for each number, s, in set S:
        if s divides n:
            stop searching S, and move onto the next number,n.
        else if s is the last element in S:
            add n to the set X.

你可以在运行这个算法之前显然删除S中的倍数,但我不认为素数是可行的方法

答案 2 :(得分:1)

由于S已排序,我们可以通过跳过已标记为(http://codepad.org/Joflhb7x)的S中的元素来保证O(N)的复杂性:

N = 10
S = [2,4,5]
marked = set()
i = 0
curr = 1

while curr <= N:
  while curr < S[i]:
    print curr
    curr = curr + 1

  if not S[i] in marked:
    mult = S[i]

    while mult <= N:
      marked.add(mult)
      mult = mult + S[i]

  i = i + 1
  curr = curr + 1

  if i == len(S):
    while curr <= N:
      if curr not in marked:
        print curr
      curr = curr + 1

print list(marked)