我遇到了一个问题,它给出了一个N
数字和一组数字,S = {s1,s2,.....sn}
s1 < s2 < sn < N
,删除{s1, s2,....sn}
的所有倍数来自范围1..N
示例:
Let N = 10
S = {2,4,5}
Output: {1, 7, 9}
Explanation: multiples of 2 within range: 2, 4, 6, 8
multiples of 4 within range: 4, 8
multiples of 5 within range: 5, 10
我想有一种算法方法,即伪代码而不是完整的解决方案。
我尝试了什么:
(Considering the same example as above)
1. For the given N, find all the prime factors of that number.
Therefore, for 10, prime-factors are: 2,3,5,7
In the given set, S = {2,4,5}, the prime-factors missing from
{2,3,5,7} are {3,7}.
2. First, check prime-factors that are present: {2,5}
Hence, all the multiples of them will be removed
{2,4,5,6,8,10}
3. Check for non-prime numbers in S = {4}
4. Check, if any divisor of these numbers has already been
previously processed.
> In this case, 2 is already processed.
> Hence no need to process 4, as all the multiples of 4
would have been implicitly checked by the previous
divisor.
If not,
> Remove all the multiples from this range.
5. Repeat for all the remaining non primes in the set.
请提出您的想法!
答案 0 :(得分:4)
可以使用类似于Eratosthenes筛子的东西在O(N log(n))时间和O(N)额外内存中解决它。
isMultiple[1..N] = false
for each s in S:
t = s
while t <= N:
isMultiple[t] = true
t += s
for i in 1..N:
if not isMultiple[i]:
print i
这使用O(N)内存来存储isMultiple
数组。
时间复杂度为O(N log(n))。实际上,对于S中的第一个元素,内部while循环将执行N / s 1 次,然后对于第二个元素执行N / s 2 ,依此类推。
我们需要估计N / s 1 + N / s 2 + ... + N / s n 的幅度。
N / s 1 + N / s 2 + ... + N / s n = N *(1 / s 1 + 1 / s 2 + ... + 1 / s n )&lt; = N *( 1/1 + 1/2 + ... + 1 / n)。
最后的不等式是由于s 1 &lt; s 2 &lt; ... &LT; s n ,因此最坏的情况是它们取值{1,2,... n}。
然而,谐波系列1/1 + 1/2 + ... + 1 / n在O(log(n))中,(例如见this),因此,上述算法的时间复杂度为O(N log(n))。
答案 1 :(得分:1)
基本解决方案:
let set X be our output set.
for each number, n, between 1 and N:
for each number, s, in set S:
if s divides n:
stop searching S, and move onto the next number,n.
else if s is the last element in S:
add n to the set X.
你可以在运行这个算法之前显然删除S中的倍数,但我不认为素数是可行的方法
答案 2 :(得分:1)
由于S已排序,我们可以通过跳过已标记为(http://codepad.org/Joflhb7x)的S中的元素来保证O(N)
的复杂性:
N = 10
S = [2,4,5]
marked = set()
i = 0
curr = 1
while curr <= N:
while curr < S[i]:
print curr
curr = curr + 1
if not S[i] in marked:
mult = S[i]
while mult <= N:
marked.add(mult)
mult = mult + S[i]
i = i + 1
curr = curr + 1
if i == len(S):
while curr <= N:
if curr not in marked:
print curr
curr = curr + 1
print list(marked)