如何找到最小的正整数使数字单调?

时间:2017-12-22 21:14:34

标签: python python-3.x algorithm

我发现了一个无法解决的编程问题。我得到了一组整数a+。对于file = open(sys.argv[1],"a+")中的所有数字A,找到最小的正整数x,使A的数字增加或减少,产品y最小可能。例如,如果x*y,则x*y会给出数字A=(363, 726, 1089)

但是我的程序没有解决一些难以理解的数字。所有案例均以

给出
n=(184573, 137588, 9182736455463728191)

这是我的慢节目:

(66999999, 99888888, 9999999999999999999999)

它可以在合理的时间内解决一些情况:

363 726 1089 1313 1452 1717 1798 1815 1919 2121 2156 2178 2189 2541 2626 2805
2904 2997 3131 3267 3297 3434 3630 3838 3993 4037 4092 4107 4191 4242 4257 4312
4334 4343 4356 4378 4407 4532 4646 4719 4747 4807 4949 5011 5055 5071 5082 5151
5214 5353 5423 5445 5454 5495 5610 5665 5731 5808 5819 5858 5951 5989 5994 6171
6248 6281 6429 6446 6468 6523 6534 6565 6567 6594 6721 6767 6868 6897 6919 7051
7077 7128 7139 7171 7227 7260 7381 7424 7474 7513 7623 7678 7831 7858 7878 7881
7909 7986 8041 8063 8074 8088 8107 8129 8162 8173 8184 8195 8214 8283 8316 8349
8382 8415 8453 8484 8514 8624 8649 8712 8756 8778 8814 8932 8987 8989 8990 8991
9053 9064 9075 9099 9101 9119 9141 9156 9191 9213 9251 9292 9309 9328 9361 9393
9438 9493 9515 9546 9595 9597 9603 9614 9667 9678 9757 9797 9801 9802 9834 9890
9898 9909

第二次尝试:

def find_smallest_increasing(number, length):
    ehd = -1
    num = "0"
    length += 1
    for one in range(0,length):
        for two in range(0,length-one):
            for three in range(0,length-one-two):
                for four in range(0,length-one-two-three):
                    for five in range(0,length-one-two-three-four):
                        for six in range(0,length-one-two-three-four-five):
                            for seven in range(0,length-one-two-three-four-five-six):
                                for eight in range(0,length-one-two-three-four-five-six-seven):
                                    for nine in range(0,length-one-two-three-four-five-six-seven-eight):
                                        if max(one,two,three,four,five,six,seven,eight,nine) > 0:
                                            num = "1"*one+"2"*two+"3"*three+"4"*four+"5"*five+"6"*six+"7"*seven+"8"*eight+"9"*nine
                                            if int(num) % number == 0:
                                                if ehd == -1:
                                                    ehd = int(num)
                                                if int(num) < ehd:
                                                    ehd = int(num)
    return(ehd)

def find_smallest_decreasing(number, length):
    ehd = -1
    num = "0"
    length += 1
    for one in range(0,length):
        for two in range(0,length-one):
            for three in range(0,length-one-two):
                for four in range(0,length-one-two-three):
                    for five in range(0,length-one-two-three-four):
                        for six in range(0,length-one-two-three-four-five):
                            for seven in range(0,length-one-two-three-four-five-six):
                                for eight in range(0,length-one-two-three-four-five-six-seven):
                                    for nine in range(0,length-one-two-three-four-five-six-seven-eight):
                                        for zero in range(0,length-one-two-three-four-five-six-seven-eight-nine):
                                            if max(one,two,three,four,five,six,seven,eight,nine) > 0:
                                                num = "9"*one+"8"*two+"7"*three+"6"*four+"5"*five+"4"*six+"3"*seven+"2"*eight+"1"*nine+"0"*zero
                                                if int(num) % number == 0:
                                                    if ehd == -1:
                                                        ehd = int(num)
                                                    if int(num) < ehd:
                                                        ehd = int(num)
    return(ehd)

numbers = [363,726,1089, 1313, 1452, 1717, 1798, 1815, 1919, 2121, 2156, 2178, 2189, 2541, 2626, 2805,
2904, 2997, 3131, 3267, 3297, 3434, 3630, 3838, 3993, 4037, 4092, 4107, 4191, 4242, 4257, 4312,
4334, 4343, 4356, 4378, 4407, 4532, 4646, 4719, 4747, 4807, 4949, 5011, 5055, 5071, 5082, 5151,
5214, 5353, 5423, 5445, 5454, 5495, 5610, 5665, 5731, 5808, 5819, 5858, 5951, 5989, 5994, 6171,
6248, 6281, 6429, 6446, 6468, 6523, 6534, 6565, 6567, 6594, 6721, 6767, 6868, 6897, 6919, 7051,
7077, 7128, 7139, 7171, 7227, 7260, 7381, 7424, 7474, 7513, 7623, 7678, 7831, 7858, 7878, 7881,
7909, 7986, 8041, 8063, 8074, 8088, 8107, 8129, 8162, 8173, 8184, 8195, 8214, 8283, 8316, 8349,
8382, 8415, 8453, 8484, 8514, 8624, 8649, 8712, 8756, 8778, 8814, 8932, 8987, 8989, 8990, 8991,
9053, 9064, 9075, 9099, 9101, 9119, 9141, 9156, 9191, 9213, 9251, 9292, 9309, 9328, 9361, 9393,
9438, 9493, 9515, 9546, 9595, 9597, 9603, 9614, 9667, 9678, 9757, 9797, 9801, 9802, 9834, 9890,
9898, 9909]

for k in range(0,len(numbers)):
    number = numbers[k]
    a = -1
    b = -1
    i= 1
    j= 1
    while a == -1:
        if a % 10 != 0:
            a = find_smallest_increasing(number,i)
        else:
            a = -1
        i = i + 1
    while b == -1:
        b = find_smallest_decreasing(number,max(i,j))
        j = j + 1
    print(str(number)+" "+str(min(a,b)/number)+" " + str(min(a,b)))

这提供了更正确的值,但仍有结果没有意义,例如

363 184573 66999999
726 137588 99888888
1089 9182736455463728191 9999999999999999999999
1313 16929 22227777
1452 68794 99888888
1717 12947 22229999
1798 12978 23334444
1815 550352 998888880
1919 11583 22227777
2121 15719 33339999
2156 30973 66777788
2178 45913682277318640955 99999999999999999999990
2189 507591 1111116699
2541 454939 1155999999
2626 12694 33334444
2805 35571 99776655
2904 34397 99888888
2997 333667 999999999
3131 10648 33338888
3267 69727578818487909397 227799999999999999999999
3297 20153 66444441
3434 22649 77776666

第三次尝试:我发现如果我分开分开简单和困难的案例,我可以解决更多案件:

def generate_all_numbers(length):
    l = list()
    for one in range(0,length):
        for two in range(0,length-one):
            for three in range(0,length-one-two):
                for four in range(0,length-one-two-three):
                    for five in range(0,length-one-two-three-four):
                        for six in range(0,length-one-two-three-four-five):
                            for seven in range(0,length-one-two-three-four-five-six):
                                for eight in range(0,length-one-two-three-four-five-six-seven):
                                    for nine in range(0,length-one-two-three-four-five-six-seven-eight):
                                        for ten in range(0,length-one-two-three-four-five-six-seven-eight-nine):
                                            if max(one,two,three,four,five,six,seven,eight,nine) > 0:
                                                num1 = "1"*one+"2"*two+"3"*three+"4"*four+"5"*five+"6"*six+"7"*seven+"8"*eight+"9"*nine
                                                num2 = "9"*one+"8"*two+"7"*three+"6"*four+"5"*five+"4"*six+"3"*seven+"2"*eight+"1"*nine+"0"*ten
                                                l.append(int(num1)) 
                                                l.append(int(num2))
    return(list(set(l)))

numbers = [363,726,1089, 1313, 1452, 1717, 1798, 1815, 1919, 2121, 2156, 2178, 2189, 2541, 2626, 2805,
2904, 2997, 3131, 3267, 3297, 3434, 3630, 3838, 3993, 4037, 4092, 4107, 4191, 4242, 4257, 4312,
4334, 4343, 4356, 4378, 4407, 4532, 4646, 4719, 4747, 4807, 4949, 5011, 5055, 5071, 5082, 5151,
5214, 5353, 5423, 5445, 5454, 5495, 5610, 5665, 5731, 5808, 5819, 5858, 5951, 5989, 5994, 6171,
6248, 6281, 6429, 6446, 6468, 6523, 6534, 6565, 6567, 6594, 6721, 6767, 6868, 6897, 6919, 7051,
7077, 7128, 7139, 7171, 7227, 7260, 7381, 7424, 7474, 7513, 7623, 7678, 7831, 7858, 7878, 7881,
7909, 7986, 8041, 8063, 8074, 8088, 8107, 8129, 8162, 8173, 8184, 8195, 8214, 8283, 8316, 8349,
8382, 8415, 8453, 8484, 8514, 8624, 8649, 8712, 8756, 8778, 8814, 8932, 8987, 8989, 8990, 8991,
9053, 9064, 9075, 9099, 9101, 9119, 9141, 9156, 9191, 9213, 9251, 9292, 9309, 9328, 9361, 9393,
9438, 9493, 9515, 9546, 9595, 9597, 9603, 9614, 9667, 9678, 9757, 9797, 9801, 9802, 9834, 9890,
9898, 9909]

l = generate_all_numbers(20)
A = list()
for i in range(len(l)):
    for j in range(len(numbers)):
        if l[i] % numbers[j] == 0:
             A.append(l[i])
B = list()
for j in range(len(numbers)):
 best = int("9" * 20)
 for i in range(len(A)):
    if A[i] % numbers[j] == 0:
        if A[i] < best:
            best = A[i]
 print(str(numbers[j])+" "+str(best/numbers[j])+ " " + str(best))

一段时间后缺少数字:5445,6534,7623,8712,9801。

但是,对于上面给出的所有输入来说,解决问题的速度算法是什么?

2 个答案:

答案 0 :(得分:1)

我不确定你算法的输出,顺便得到一个数字 N 的下一个单调数字,一个可能的算法如下:

def nextMonotoneDigits(self, N):
        if N < 10: return N
        n, inv_index = N, -1
        num = [int(d) for d in str(n)[::-1]] 

        for i in range(1, len(num)): 
            if num[i] > num[i - 1] or (inv_index != -1 and num[inv_index] == num[i]):
                inv_index = i

        if inv_index == -1: return N

        for i in range(inv_index): num[i] = 9
        num[inv_index] -= 1

        return int(''.join([ str(i) for i in num[::-1]])) 

在此repl

中试用

答案 1 :(得分:1)

我们可以通过观察任何基数为10的整数y由不同的部分组成,每个都不能影响最后一个数字右边的数字来缩小搜索空间:

y = b_n*10^n + b_(n-1)*10^(n-1) ... + b_0*10^0

例如,在帖子中取数字363。所选y中最右边的数字仅设置最后一个数字中最右边的数字:

3 * 363 = 1089

我们现在修复了b_0的数字,该数字还修复了最终x*y中最右边的数字,并且(可能)限制了我们对b_1的选择。如果我们想要跟随其他9人,我们会:

b_1 * 3 + 8 = 9 (mod 10)
b_1 * 3 = 1 (mod 10)
b_1 = (10x + 1) / 3
b_1 = 7

等等。