嗨我有lemma
所示格式的词形文本。我想得到每个单词的TfIdf得分这是我写的函数:
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
lemma=["'Ah", 'yes', u'say', 'softly', 'Harry',
'Potter', 'Our', 'new', 'celebrity', 'You',
'learn', 'subtle', 'science', 'exact', 'art',
'potion-making', u'begin', 'He', u'speak', 'barely',
'whisper', 'caught', 'every', 'word', 'like',
'Professor', 'McGonagall', 'Snape', 'gift',
u'keep', 'class', 'silent', 'without', 'effort',
'As', 'little', 'foolish', 'wand-waving', 'many',
'hardly', 'believe', 'magic', 'I', 'dont', 'expect', 'really',
'understand', 'beauty']
def Tfidf_Vectorize(lemmas_name):
vect = TfidfVectorizer(stop_words='english',ngram_range=(1,2))
vect_transform = vect.fit_transform(lemmas_name)
# First approach of creating a dataframe of weight & feature names
vect_score = np.asarray(vect_transform.mean(axis=0)).ravel().tolist()
vect_array = pd.DataFrame({'term': vect.get_feature_names(), 'weight': vect_score})
vect_array.sort_values(by='weight',ascending=False,inplace=True)
# Second approach of getting the feature names
vect_fn = np.array(vect.get_feature_names())
sorted_tfidf_index = vect_transform.max(0).toarray()[0].argsort()
print('Largest Tfidf:\n{}\n'.format(vect_fn[sorted_tfidf_index[:-11:-1]]))
return vect_array
tf_dataframe=Tfidf_Vectorize(lemma)
print(tf_dataframe.iloc[:5,:])
我得到的输出:
print('Largest Tfidf:\n{}\n'.format(vect_fn[sorted_tfidf_index[:-11:-1]]))
是
Largest Tfidf:
[u'yes' u'fools' u'fury' u'gale' u'ghosts' u'gift' u'glory' u'glow' u'good'
u'granger']
tf_dataframe
term weight
261 snape 0.027875
238 say 0.022648
211 potter 0.013937
181 mind 0.010453
123 harry 0.010453
60 dark 0.006969
75 dumbledore 0.006969
311 voice 0.005226
125 head 0.005226
231 ron 0.005226
这两种方法不应导致顶级功能的相同结果吗?我只想计算tfidf分数并获得前5个特征/重量。我做错了什么?
答案 0 :(得分:0)
我不确定我在这里看到的是什么,但我觉得你错误地使用了TfidfVectorizer
。但是,如果我对你正在尝试的内容有错误的想法,请纠正我。
所以......您需要的是一份供您fit_transform()
的文件清单。从那里你可以构造一个矩阵,例如,每列代表一个文档,每一行代表一个单词。该矩阵中的一个单元格是文档 j 中 i 一词的tf-idf分数。
以下是一个例子:
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
documents = [
"This is a document.",
"This is another document with slightly more text.",
"Whereas this is yet another document with even more text than the other ones.",
"This document is awesome and also rather long.",
"The car he drove was red."
]
document_names = ['Doc {:d}'.format(i) for i in range(len(documents))]
def get_tfidf(docs, ngram_range=(1,1), index=None):
vect = TfidfVectorizer(stop_words='english', ngram_range=ngram_range)
tfidf = vect.fit_transform(documents).todense()
return pd.DataFrame(tfidf, columns=vect.get_feature_names(), index=index).T
print(get_tfidf(documents, ngram_range=(1,2), index=document_names))
哪个会给你:
Doc 0 Doc 1 Doc 2 Doc 3 Doc 4
awesome 0.0 0.000000 0.000000 0.481270 0.000000
awesome long 0.0 0.000000 0.000000 0.481270 0.000000
car 0.0 0.000000 0.000000 0.000000 0.447214
car drove 0.0 0.000000 0.000000 0.000000 0.447214
document 1.0 0.282814 0.282814 0.271139 0.000000
document awesome 0.0 0.000000 0.000000 0.481270 0.000000
document slightly 0.0 0.501992 0.000000 0.000000 0.000000
document text 0.0 0.000000 0.501992 0.000000 0.000000
drove 0.0 0.000000 0.000000 0.000000 0.447214
drove red 0.0 0.000000 0.000000 0.000000 0.447214
long 0.0 0.000000 0.000000 0.481270 0.000000
ones 0.0 0.000000 0.501992 0.000000 0.000000
red 0.0 0.000000 0.000000 0.000000 0.447214
slightly 0.0 0.501992 0.000000 0.000000 0.000000
slightly text 0.0 0.501992 0.000000 0.000000 0.000000
text 0.0 0.405004 0.405004 0.000000 0.000000
text ones 0.0 0.000000 0.501992 0.000000 0.000000
您显示的两种方法可以获得单词及其各自的分数来计算所有文档的平均值,并分别获取每个单词的最大分数。
所以,让我们这样做并比较两种方法:
df = get_tfidf(documents, ngram_range=(1,2), index=index)
print(pd.DataFrame([df.mean(1), df.max(1)], index=['score_mean', 'score_max']).T)
我们可以看到分数当然不同。
score_mean score_max
awesome 0.096254 0.481270
awesome long 0.096254 0.481270
car 0.089443 0.447214
car drove 0.089443 0.447214
document 0.367353 1.000000
document awesome 0.096254 0.481270
document slightly 0.100398 0.501992
document text 0.100398 0.501992
drove 0.089443 0.447214
drove red 0.089443 0.447214
long 0.096254 0.481270
ones 0.100398 0.501992
red 0.089443 0.447214
slightly 0.100398 0.501992
slightly text 0.100398 0.501992
text 0.162002 0.405004
text ones 0.100398 0.501992
注意:强>
您可以说服自己这与在TfidfVectorizer
上调用min / max相同:
vect = TfidfVectorizer(stop_words='english', ngram_range=(1,2))
tfidf = vect.fit_transform(documents)
print(tfidf.max(0))
print(tfidf.mean(0))