在Python Pandas中,我有一个DataFrame。我按列对此DataFrame进行分组,并希望将列的最后一个值分配给另一列的所有行。
我知道我可以通过此命令选择组的最后一行:
import pandas as pd
df = pd.DataFrame({'a': (1,1,2,3,3), 'b':(20,21,30,40,41)})
print(df)
print("-")
result = df.groupby('a').nth(-1)
print(result)
结果:
a b
0 1 20
1 1 21
2 2 30
3 3 40
4 3 41
-
b
a
1 21
2 30
3 41
如何将此操作的结果分配回原始数据帧,以便我有类似的内容:
a b b_new
0 1 20 21
1 1 21 21
2 2 30 30
3 3 40 41
4 3 41 41
答案 0 :(得分:6)
df['b_new'] = df.groupby('a')['b'].transform('last')
替代:
df['b_new'] = df.groupby('a')['b'].transform(lambda x: x.iat[-1])
print(df)
a b b_new
0 1 20 21
1 1 21 21
2 2 30 30
3 3 40 41
4 3 41 41
df = df.join(df.groupby('a')['b'].nth(-1).rename('b_new'), 'a')
print(df)
a b b_new
0 1 20 21
1 1 21 21
2 2 30 30
3 3 40 41
4 3 41 41
<强>计时强>:
N = 10000
df = pd.DataFrame({'a':np.random.randint(1000,size=N),
'b':np.random.randint(10000,size=N)})
#print (df)
def f(df):
return df.join(df.groupby('a')['b'].nth(-1).rename('b_new'), 'a')
#cᴏʟᴅsᴘᴇᴇᴅ1
In [211]: %timeit df['b_new'] = df.a.map(df.groupby('a').b.nth(-1))
100 loops, best of 3: 3.57 ms per loop
#cᴏʟᴅsᴘᴇᴇᴅ2
In [212]: %timeit df['b_new'] = df.a.replace(df.groupby('a').b.nth(-1))
10 loops, best of 3: 71.3 ms per loop
#jezrael1
In [213]: %timeit df['b_new'] = df.groupby('a')['b'].transform('last')
1000 loops, best of 3: 1.82 ms per loop
#jezrael2
In [214]: %timeit df['b_new'] = df.groupby('a')['b'].transform(lambda x: x.iat[-1])
10 loops, best of 3: 178 ms per loop
#jezrael3
In [219]: %timeit f(df)
100 loops, best of 3: 3.63 ms per loop
<强>买者强>
考虑到组的数量,结果不能解决性能问题,这会对某些解决方案的时间产生很大的影响。
答案 1 :(得分:6)
两种可能性,groupby
+ nth
+ map
或replace
df['b_new'] = df.a.map(df.groupby('a').b.nth(-1))
或者,
df['b_new'] = df.a.replace(df.groupby('a').b.nth(-1))
您也可以将nth(-1)
替换为last()
(事实上,这样做会使速度提高一点),但是nth
可让您更灵活地从每个项目中选择哪个项目b
中的小组。
df
a b b_new
0 1 20 21
1 1 21 21
2 2 30 30
3 3 40 41
4 3 41 41
答案 2 :(得分:3)
我认为这应该很快
df.merge(df.drop_duplicates('a',keep='last'),on='a',how='left')
Out[797]:
a b_x b_y
0 1 20 21
1 1 21 21
2 2 30 30
3 3 40 41
4 3 41 41