EM算法使用pykalman返回不同的答案

时间:2017-12-21 10:51:00

标签: python kalman-filter state-space expectation-maximization pykalman

我在pykalman 0.9.5

中使用Python 3.6.3时遇到了问题

请参阅下面的代码,为什么kf2kf3的结果不同,kf1kf3的结果相同?

kf2kf3之间的过程差异在于我只是将迭代分为运行kf2函数的2倍。

感谢大家对此进行调查。

>>>pri_mean[:10]
array([ 2827.2222,  2829.6   ,  2831.    ,  2832.1   ,  2833.1   ,  2835.3   ,  2833.9   ,
        2833.8   ,  2833.6   ,  2833.    ])

>>>kf1 = KalmanFilter()
>>>kf1 = kf1.em(pri_mean, 10, em_vars='all')
>>>print(kf1.transition_matrices, kf1.transition_offsets, kf1.transition_covariance)
[[ 0.99741876]] [ 10.04426882] [[ 2896.92752373]]
>>>kf2 = kf1.em(pri_mean, 10, em_vars='all')
>>>print(kf2.transition_matrices, kf2.transition_offsets, kf2.transition_covariance)
[[ 0.99364606]] [ 20.02260806] [[ 2600.94151188]]

>>>kf3 = KalmanFilter()
>>>kf3 = kf3.em(pri_mean, 20, em_vars='all')
>>>print(kf3.transition_matrices, kf3.transition_offsets, kf3.transition_covariance)
[[ 0.99741876]] [ 10.04426882] [[ 2896.92752373]]

1 个答案:

答案 0 :(得分:0)

我编辑答案,因为我误解了这个问题。我认为问题在于您错过了关键字n_iter

请参阅此代码:

kf1 = KalmanFilter()
kf1 = kf1.em(pri_mean, n_iter=10, em_vars='all')
print(kf1.transition_matrices, kf1.transition_offsets, kf1.transition_covariance)
kf1 = kf1.em(pri_mean, n_iter=10, em_vars='all')
print(kf1.transition_matrices, kf1.transition_offsets, kf1.transition_covariance)
kf1 = KalmanFilter()
kf1 = kf1.em(pri_mean, n_iter=20, em_vars='all')
print(kf1.transition_matrices, kf1.transition_offsets, kf1.transition_covariance)

我通过KalmanFilter()创建一个过滤器,循环10次迭代并打印,然后再打印10次并打印。 这相当于直接调用.em() 20次迭代。

会产生以下输出

[[ 0.95500561]] [ 113.29118228] [[ 6431.66262464]]
[[ 0.93636512]] [ 119.32378005] [[ 249.67547612]]
[[ 0.93636512]] [ 119.32378005] [[ 249.67547612]]