在R中将分类变量转换为数字

时间:2017-12-21 09:50:49

标签: r

我有一个庞大的数据库,我有很多分类变量。 你可以在这里观看:

> M=data.frame(Type_peau,PEAU_CORPS,SENSIBILITE,IMPERFECTIONS,BRILLANCE ,GRAIN_PEAU,RIDES_VISAGE,ALLERGIES,MAINS,
+              INTERET_ALIM_NATURELLE,INTERET_ORIGINE_GEO,INTERET_VACANCES,INTERET_COMPOSITION,DataQuest1,Priorite2,
+              Priorite1,DataQuest4,Age,Nbre_gift,w,Nbre_achat)
> # pour voir s'il y a des données manquantes
> str(M)
'data.frame':   836 obs. of  21 variables:
 $ Type_peau             : Factor w/ 5 levels "","Grasse","Mixte",..: 3 4 5 3 4 3 3 3 2 3 ...
 $ PEAU_CORPS            : Factor w/ 4 levels "","Normale","Sèche",..: 2 3 3 2 2 2 3 2 3 2 ...
 $ SENSIBILITE           : Factor w/ 4 levels "","Aucune","Fréquente",..: 4 4 4 2 4 3 4 2 4 4 ...
 $ IMPERFECTIONS         : Factor w/ 4 levels "","Fréquente",..: 3 4 3 4 3 2 3 4 3 3 ...
 $ BRILLANCE             : Factor w/ 4 levels "","Aucune","Partout",..: 4 2 2 4 4 4 4 4 3 4 ...
 $ GRAIN_PEAU            : Factor w/ 4 levels "","Dilaté","Fin",..: 4 4 4 2 4 2 4 4 2 4 ...
 $ RIDES_VISAGE          : Factor w/ 4 levels "","Aucune","Très visibles",..: 2 2 2 4 4 2 4 2 4 2 ...
 $ ALLERGIES             : Factor w/ 4 levels "","Non","Oui",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ MAINS                 : Factor w/ 4 levels "","Moites","Normales",..: 3 4 4 3 3 3 3 4 4 4 ...
 $ INTERET_ALIM_NATURELLE: Factor w/ 4 levels "","Beaucoup",..: 2 4 4 4 2 2 2 4 4 2 ...
 $ INTERET_ORIGINE_GEO   : Factor w/ 5 levels "","Beaucoup",..: 2 4 2 5 2 2 2 2 2 2 ...
 $ INTERET_VACANCES      : Factor w/ 6 levels "","À la mer",..: 3 4 2 2 3 2 3 2 3 2 ...
 $ INTERET_COMPOSITION   : Factor w/ 4 levels "","Beaucoup",..: 2 2 2 4 2 2 2 2 4 2 ...
 $ DataQuest1            : Factor w/ 4 levels "-20","20-30",..: 4 3 4 4 4 3 3 2 3 2 ...
 $ Priorite2             : Factor w/ 7 levels "éclatante","hydratée",..: 3 1 3 4 3 2 7 1 4 6 ...
 $ Priorite1             : Factor w/ 7 levels "éclatante","hydratée",..: 4 6 1 5 1 6 1 2 6 4 ...
 $ DataQuest4            : Factor w/ 2 levels "nature","urbain": 2 2 2 2 2 1 2 2 2 2 ...
 $ Age                   : int  32 37 23 44 33 30 43 43 60 31 ...
 $ Nbre_gift             : int  1 4 1 1 2 1 1 1 1 1 ...
 $ w                     : num  0.25 0.25 0.5 0.25 0.5 0 0 0 0 0.75 ...
 $ Nbre_achat            : int  3 4 7 3 6 9 22 13 7 16 ...

我需要自动将所有分类变量转换为数字。例如,对于变量 Type_peau ,它是:

 head(Type_peau)
[1] Mixte   Normale Sèche   Mixte   Normale Mixte  
Levels:  Grasse Mixte Normale Sèche

我想要它:

head(Type_peau)
[1] 2 3 4 2 3 2
Levels: 1 2 3 4

如何自动为所有分类变量执行此操作?

7 个答案:

答案 0 :(得分:5)

您可以使用unclass()显示因子变量的数值:

Type_peau<-as.factor(c("Mixte","Normale","Sèche","Mixte","Normale","Mixte"))
Type_peau
unclass(Type_peau)

要对所有分类变量执行此操作,您可以使用sapply()

must_convert<-sapply(M,is.factor)       # logical vector telling if a variable needs to be displayed as numeric
M2<-sapply(M[,must_convert],unclass)    # data.frame of all categorical variables now displayed as numeric
out<-cbind(M[,!must_convert],M2)        # complete data.frame with all variables put together

编辑:A5C1D2H2I1M1N2O1R2T1's solution一步到位:

out<-data.matrix(M)

仅当您的data.frame不包含任何字符变量时才会起作用(否则,它们将被置于NA)。

答案 1 :(得分:4)

也许你在data.matrix之后。从函数的描述:

  

返回通过将数据框中的所有变量转换为数字模式获得的矩阵,然后将它们绑定在一起作为矩阵的列。因素和有序因素被其内部代码所取代。

示例:

mydf <- data.frame(A = letters[1:5],
                   B = LETTERS[1:5],
                   C = month.abb[1:5],
                   D = 1:5)
str(mydf)
# 'data.frame': 5 obs. of  4 variables:
#  $ A: Factor w/ 5 levels "a","b","c","d",..: 1 2 3 4 5
#  $ B: Factor w/ 5 levels "A","B","C","D",..: 1 2 3 4 5
#  $ C: Factor w/ 5 levels "Apr","Feb","Jan",..: 3 2 4 1 5
#  $ D: int  1 2 3 4 5
data.matrix(mydf)
#      A B C D
# [1,] 1 1 3 1
# [2,] 2 2 2 2
# [3,] 3 3 4 3
# [4,] 4 4 1 4
# [5,] 5 5 5 5

使用以下方法全部替换:

mydf[] <- data.matrix(mydf)
mydf
#   A B C D
# 1 1 1 3 1
# 2 2 2 2 2
# 3 3 3 4 3
# 4 4 4 1 4
# 5 5 5 5 5

当然,如果您有更多列类型,则必须首先决定如何处理它们。例如,有人担心如果有character列,data.matrix会产生一列NA值,这是正确的。但是,正确的问题应该是“您希望如何处理character列?

。”

以下是两个选项。您可以类似地为其他列类型扩展逻辑。

mydf <- data.frame(A = letters[1:5],
                   B = LETTERS[1:5],
                   C = month.abb[1:5],
                   D = 1:5)
mydf$E <- state.abb[1:5]
str(mydf)
# 'data.frame': 5 obs. of  5 variables:
#  $ A: Factor w/ 5 levels "a","b","c","d",..: 1 2 3 4 5
#  $ B: Factor w/ 5 levels "A","B","C","D",..: 1 2 3 4 5
#  $ C: Factor w/ 5 levels "Apr","Feb","Jan",..: 3 2 4 1 5
#  $ D: int  1 2 3 4 5
#  $ E: chr  "AL" "AK" "AZ" "AR" ...

## You want to convert everything to numeric
data.matrix(data.frame(unclass(mydf))) 
#      A B C D E
# [1,] 1 1 3 1 2
# [2,] 2 2 2 2 1
# [3,] 3 3 4 3 4
# [4,] 4 4 1 4 3
# [5,] 5 5 5 5 5

## You only want to convert factors to numeric
mydf[sapply(mydf, is.factor)] <- data.matrix(mydf[sapply(mydf, is.factor)])
mydf
#   A B C D  E
# 1 1 1 3 1 AL
# 2 2 2 2 2 AK
# 3 3 3 4 3 AZ
# 4 4 4 1 4 AR
# 5 5 5 5 5 CA

答案 2 :(得分:4)

library(dplyr)

mydf <- data.frame(A = letters[1:5],
                   B = LETTERS[1:5],
                   C = month.abb[1:5],
                   D = 1:5)
glimpse(mydf)

# Observations: 5
# Variables: 4
# $ A <fctr> a, b, c, d, e
# $ B <fctr> A, B, C, D, E
# $ C <fctr> Jan, Feb, Mar, Apr, May
# $ D <int> 1, 2, 3, 4, 5

dplyr

中使用谓词函数
mydf %>% mutate_if(is.factor, as.numeric)

#  A B C D
# 1 1 1 3 1
# 2 2 2 2 2
# 3 3 3 4 3
# 4 4 4 1 4
# 5 5 5 5 5

答案 3 :(得分:2)

as.numeric也完成了这项工作。

df <- iris
df$newgroup <- as.factor(rep(c(letters[1:10]))) # just another factor
str(df) # Species and newgroup are categorial variables

as.numeric(df$Species) # this returns the levels (numeric) of Species.
                       # Now, we want to apply this automatically to all
                       # categorical variables

# using lapply
i <- sapply(df, is.factor)
df[i] <- lapply(df[i], as.numeric)
str(df)

# using dplyr
#(load df again)
library(dplyr)
df2 <- df %>% mutate_if(is.factor, as.numeric)
str(df2)

# using purrr
library(purrr)
df3 <- df %>% map_if(is.factor, as.numeric)
str(df3)

如果您还想创建虚拟变量,请尝试

library(dummies)
df.4 <- dummy.data.frame(df, sep = ".")

答案 4 :(得分:0)

最好和最快的方法是使用以下代码:

DataFrameYouWant <- data.frame(yourData)
DataFrameYouWant[] <- lapply(DataFrameYouWant, as.integer)

上面的代码会自动将数据中的所有因子变量转换为数字,将数据转换为数据框。您可以指定要转换为数字的列/变量。

答案 5 :(得分:0)

仅添加到已发布的答案中,此link提供了一些示例,这些示例将分类数据转换为数值,但是如果您对默认转换不满意,还可以将这些数字映射到指定值。

答案 6 :(得分:0)

这也可以使用因子函数一步完成。

{
    "name": "laravel/laravel",
    "type": "project",
    "keywords": [
        "framework",
        "laravel"
    ],
    "config": {
        "optimize-autoloader": true,
        "preferred-install": "dist",
        "sort-packages": true
    },
    "extra": {
        "laravel": {
            "dont-discover": []
        }
    },
    "autoload": {
        "psr-0": {
            "":["database/seeds"]
        }
    }
}

注意:它将替换该列。