python对不规则(x,y,z)网格进行4D插值

时间:2017-12-20 07:36:57

标签: python numpy 3d scipy interpolation

我有一些(x, y, z, V)形式的数据,其中x,y,z是距离,V是水分。我在StackOverflow上阅读了很多关于python的插值,例如thisthis有价值的帖子,但所有这些都是关于x, y, z的常规网格。即,x的每个值对y的每个点以及z的每个点都有相同的贡献。另一方面,我的观点来自3D有限元网格(如下所示),其中网格不规则。

enter image description here

上述两篇帖子12,将x,y,z中的每一个定义为一个单独的numpy数组,然后他们使用类似cartcoord = zip(x, y)然后scipy.interpolate.LinearNDInterpolator(cartcoord, z)的内容一个3D例子)。我不能做同样的事情,因为我的3D网格不是常规的,因此不是每个点都对其他点有贡献,所以如果我重复这些方法,我发现很多空值,并且我得到了很多错误。

以下是[x, y, z, V]

形式的10个示例点
data = [[27.827, 18.530, -30.417, 0.205] , [24.002, 17.759, -24.782, 0.197] , 
[22.145, 13.687, -33.282, 0.204] , [17.627, 18.224, -25.197, 0.197] , 
[29.018, 18.841, -38.761, 0.212] , [24.834, 20.538, -33.012, 0.208] , 
[26.232, 22.327, -27.735, 0.204] , [23.017, 23.037, -29.230, 0.205] , 
[28.761, 21.565, -31.586, 0.211] , [26.263, 23.686, -32.766, 0.215]]

我想获得点V

的插值(25, 20, -30)

我怎样才能得到它?

1 个答案:

答案 0 :(得分:5)

我找到了答案,并将其发布给StackOverflow读者。

方法如下:

1-进口:

import numpy as np
from scipy.interpolate import griddata
from scipy.interpolate import LinearNDInterpolator

2-准备数据如下:

# put the available x,y,z data as a numpy array
points = np.array([
        [ 27.827,  18.53 , -30.417], [ 24.002,  17.759, -24.782],
        [ 22.145,  13.687, -33.282], [ 17.627,  18.224, -25.197],
        [ 29.018,  18.841, -38.761], [ 24.834,  20.538, -33.012],
        [ 26.232,  22.327, -27.735], [ 23.017,  23.037, -29.23 ],
        [ 28.761,  21.565, -31.586], [ 26.263,  23.686, -32.766]])
# and put the moisture corresponding data values in a separate array:
values = np.array([0.205,  0.197,  0.204,  0.197,  0.212,  
                   0.208,  0.204,  0.205, 0.211,  0.215])
# Finally, put the desired point/points you want to interpolate over
request = np.array([[25, 20, -30], [27, 20, -32]])

3-编写最后一行代码以获取插值

方法1 ,使用griddata

print griddata(points, values, request)
# OUTPUT: array([ 0.20448536, 0.20782028])

方法2 ,使用LinearNDInterpolator

# First, define an interpolator function
linInter= LinearNDInterpolator(points, values)

# Then, apply the function to one or more points
print linInter(np.array([[25, 20, -30]]))
print linInter(xi)
# OUTPUT: [0.20448536  0.20782028]
# I think you may use it with python map or pandas.apply as well

希望每个人都受益。

投注问候