现在,我调用K =稀疏(I,J,V,n,n)函数在Julia中创建稀疏(对称)K矩阵。而且,我正在做很多步骤。
由于内存和效率的考虑,我想修改K.nzval值,而不是创建一个新的稀疏K矩阵。请注意,每个步骤的I和J矢量相同,但非零值(V)在每一步都在变化。基本上,我们可以说我们知道COO格式的稀疏模式。 (我和J没有订购,可能有多个(I [i],J [i])条目)
我尝试命令我的COO格式向量与CSC / CSR格式存储相关。但是,我发现它非常重要(至少目前为止)。
有没有办法做到这一点或神奇的“稀疏!”功能?谢谢,
以下是与我的问题相关的示例代码。
n=19 # this is much bigger in reality ~ 100000. It is the dimension of a global stiffness matrix in finite element method, and it is highly sparse!
I = rand(1:n,12)
J = rand(1:n,12)
#
for k=365
I,J,val = computeVal() # I,J are the same as before, val is different, and might have duplicates in it.
K = sparse(I,J,val,19,19)
# compute eigs(K,...)
end
# instead I would like to decrease the memory/cost of these operations with following
# we know I,J
for k=365
I,J,val = computeVal() # I,J are the same as before, val is different, and might have duplicates in it.
# note that nonzeros(K) and val might have different size due to dublicate entries.
magical_sparse!(K,val)
# compute eigs(K,...)
end
# what I want to implement
function magical_sparse!(K::SparseMatrixCSC,val::Vector{Float64}) #(Note that this is not a complete function)
# modify K
K.nzval[some_array] = val
end
编辑:
这里给出了一个更具体的例子。
n=4 # dimension of sparse K matrix
I = [1,1,2,2,3,3,4,4,1,4,1]
J = [1,2,1,2,3,4,4,3,2,4,2]
# note that the (I,J) -> (1,2) and (4,4) are duplicates.
V = [1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.]
function computeVal!(V)
# dummy function
# return modified V
rand!(V) # this part is involed, so I will just use rand to represent that we compute new values at each step for V vector.
end
for k=1:365
computeVal!(V)
K = sparse(I,J,V,n,n)
# do things with K
end
# Things to notice:
# println(length(V)) -> 11
# println(length(K.nzval)) -> 8
# I don't want to call sparse function at each step.
# instead I would like to decrease the cost of these operations with following
# we know I,J
for k=1:365
computeVal!(V)
magical_sparse!(K,V)
# do things with K
end
# what I want to implement
function magical_sparse!(K::SparseMatrixCSC,V::Vector{Float64}) #(Note that this is not a complete function)
# modify nonzeros of K and return K
end
答案 0 :(得分:0)
更新当前问题
根据问题的变化,新的解决方案是:
for k=365
computeVal!(V)
foldl((x,y)->(x[y[1],y[2]]+=y[3];x),fill!(K, 0.0), zip(I,J,V))
# do things with K
end
此解决方案使用了一些技巧,例如使用K
清零fill!
,默认情况下会返回K
,然后将其用作foldl
的初始值。同样,使用?foldl
应该清除这里发生的事情。
回答旧问题
更换
for k=365
val = rand(12)
magical_sparse!(K,val)
# compute eigs(K,...)
end
与
for k=365
rand!(nonzeros(K))
# compute eigs(K,...)
end
应该这样做。
使用?rand!
和?nonzeros
获取相应功能的帮助。