处理完数据后,我在以下结构(嵌套字典)中保存了组级别计算:
buttonWidth = 100; %in Pixels
buttonHeight = 100;
imPad = 10; %A little bit of padding
imData = imread('yourImage.jpg'); %Read your image
imSmall= imresize(imData , [buttonWidth buttonHeight]-imPad); %Resize it.
% Place it on the button
h=uicontrol('style','pushbutton', 'units','pixels',...
'position',[50 50 buttonWidth buttonHeight],...
'cdata',imSmall)
字典的结构是:
{'Source1': {(1, 2): {'value1': -1.4089917877152731, 'value2': 0.15890127107708821}, (1, 3): {'value1': -3.6436438771179183, 'value2': 0.00027189114106343325}, (1, 4): {'value1': 1.3921379718956783, 'value2': 0.1639443047264573}, (2, 3): {'value1': -2.1272739953077449, 'value2': 0.033444556519261023}, (3, 4): {'value1': 5.0887284442498775, 'value2': 3.7318559307126006e-07}, (2, 4): {'value1': 2.781268059718232, 'value2': 0.0054326884405563099}}, 'Source2': {(1, 2): {'value1': 1.6065065530210021, 'value2': 0.10840303417258132}, (1, 3): {'value1': -0.67561007794063666, 'value2': 0.49941051115943469}, (1, 4): {'value1': -0.99500921260852215, 'value2': 0.31991568858488023}, (2, 3): {'value1': -2.4076869756909676, 'value2': 0.016168545874782416}, (3, 4): {'value1': -0.31851460166510093, 'value2': 0.75013768971795858}, (2, 4): {'value1': -2.7976881039916965, 'value2': 0.0052043800033575345}}}
我的目标是获取下表
Level1 - Source
Level2 - Group comparison (1,2) means compare Group 1 vs Group2
Level3 - Value of the comparison in two measurement types
什么是将其转换为熊猫数据框架的最佳方式。
答案 0 :(得分:3)
我认为你需要:
df = pd.concat({k:pd.DataFrame(v) for k, v in d.items()})
df.columns = ['({},{})'.format(i,j) for i,j in df.columns]
print (df)
(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
Source1 value1 -1.408992 -3.643644 1.392138 -2.127274 2.781268 5.088728e+00
value2 0.158901 0.000272 0.163944 0.033445 0.005433 3.731856e-07
Source2 value1 1.606507 -0.675610 -0.995009 -2.407687 -2.797688 -3.185146e-01
value2 0.108403 0.499411 0.319916 0.016169 0.005204 7.501377e-01