我正在使用opencv,并希望坚持下去。
我有5张图像,其中一些公共区域以成对方式显示。我想将它们合并在一个图像中。我已经成功地将两个图像连接在一起,因为它们具有相同的分辨率(稍微调整使它们达到相同的分辨率而不会显着扭曲内容)。但是现在这个合并的第一阶段给了我一个高度膨胀的图像,分辨率已经大大提高了(增加了两个图像)。 为了合并这两个图像,我已经将它们的分辨率赋予相同的值,并且它不会导致很多失真。但是现在这个图像的长度加倍了。如果我将其分辨率更改为接下来用于拼接的图像的级别,则会严重扭曲第一阶段的内容,从而导致此处的结果。 我如何解决这个问题,因为我需要经历5-6次拼接迭代,其中分辨率将不断增加? 此外,如果有任何文本通过示例进行图像处理的细节,如上所述。
Stitcher.py
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
# import the necessary packages
import numpy as np
import imutils
import cv2
class Stitcher:
def __init__(self):
# determine if we are using OpenCV v3.X
self.isv3 = imutils.is_cv3()
def stitch(self, images, ratio=0.75, reprojThresh=4.0,
showMatches=False):
# unpack the images, then detect keypoints and extract
# local invariant descriptors from them
(imageB, imageA) = images
#(b, g, r) = cv2.split(imageA)
#imageA = cv2.merge([r,g,b])
#(b, g, r) = cv2.split(imageB)
#imageB = cv2.merge([r,g,b])
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
# match features between the two images
M = self.matchKeypoints(kpsA, kpsB,
featuresA, featuresB, ratio, reprojThresh)
# if the match is None, then there aren't enough matched
# keypoints to create a panorama
if M is None:
return None
# otherwise, apply a perspective warp to stitch the images
# together
(matches, H, status) = M
result = cv2.warpPerspective(imageA, H,
(imageA.size[1] + imageB.size[1], imageA.size[0]))
result[0:imageB.size[0], 0:imageB.size[1]] = imageB
# check to see if the keypoint matches should be visualized
if showMatches:
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
status)
# return a tuple of the stitched image and the
# visualization
return (result, vis)
# return the stitched image
return result
def detectAndDescribe(self, image):
# convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# check to see if we are using OpenCV 3.X
if self.isv3:
# detect and extract features from the image
descriptor = cv2.xfeatures2d.SIFT_create()
(kps, features) = descriptor.detectAndCompute(image, None)
# otherwise, we are using OpenCV 2.4.X
else:
# detect keypoints in the image
detector = cv2.FeatureDetector_create("SIFT")
kps = detector.detect(gray)
# extract features from the image
extractor = cv2.DescriptorExtractor_create("SIFT")
(kps, features) = extractor.compute(gray, kps)
# convert the keypoints from KeyPoint objects to NumPy
# arrays
kps = np.float32([kp.pt for kp in kps])
# return a tuple of keypoints and features
return (kps, features)
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
ratio, reprojThresh):
# compute the raw matches and initialize the list of actual
# matches
matcher = cv2.DescriptorMatcher_create("BruteForce")
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
# loop over the raw matches
for m in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
# computing a homography requires at least 4 matches
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# compute the homography between the two sets of points
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
reprojThresh)
# return the matches along with the homograpy matrix
# and status of each matched point
return (matches, H, status)
# otherwise, no homograpy could be computed
return None
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# initialize the output visualization image
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# loop over the matches
for ((trainIdx, queryIdx), s) in zip(matches, status):
# only process the match if the keypoint was successfully
# matched
if s == 1:
# draw the match
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# return the visualization
return vis
run.py
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 18 11:13:23 2017
@author: user
"""
# import the necessary packages
import os
os.chdir('/home/user/Desktop/stitcher')
from str import Stitcher
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--first", required=True,
help="path to the first image")
ap.add_argument("-s", "--second", required=True,
help="path to the second image")
args = vars(ap.parse_args())
# load the two images and resize them to have a width of 400 pixels
# (for faster processing)
#from PIL import Image
#imageA = Image.open(args['first']).convert('RGB')
#imageB = Image.open(args['second']).convert('RGB')
imageA = cv2.imread(args["first"])
imageB = cv2.imread(args["second"])
#imageA = imutils.resize(imageA, width=400)
#imageB = imutils.resize(imageB, width=400)
imageA = cv2.resize(imageA,(2464,832)) #hardcoded values
imageB = cv2.resize(imageB,(2464,832)) #hardcoded values
# stitch the images together to create a panorama
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
cv2.imwrite('stage1.png',result)
# show the images
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)
正如您所看到的,我调整了图像的大小,使其具有与硬编码值相同的高度和宽度。我本来可以得到最少的两个,把它作为它们的长度和宽度。
当我输入第三张图像时,我无法对其进行充气以匹配stage1的分辨率,或者我也无法降低stage1的分辨率以匹配第三张图像。
P.S。 :imgutils没有给我一个选择长度和宽度的方法。