如何在panaroma中拼接多个图像?

时间:2017-12-18 22:02:25

标签: python python-2.7 opencv

我正在使用opencv,并希望坚持下去。

我有5张图像,其中一些公共区域以成对方式显示。我想将它们合并在一个图像中。我已经成功地将两个图像连接在一起,因为它们具有相同的分辨率(稍微调整使它们达到相同的分辨率而不会显着扭曲内容)。但是现在这个合并的第一阶段给了我一个高度膨胀的图像,分辨率已经大大提高了(增加了两个图像)。 为了合并这两个图像,我已经将它们的分辨率赋予相同的值,并且它不会导致很多失真。但是现在这个图像的长度加倍了。如果我将其分辨率更改为接下来用于拼接的图像的级别,则会严重扭曲第一阶段的内容,从而导致此处的结果。 我如何解决这个问题,因为我需要经历5-6次拼接迭代,其中分辨率将不断增加? 此外,如果有任何文本通过示例进行图像处理的细节,如上所述。

Stitcher.py

# -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""
# import the necessary packages
import numpy as np
import imutils
import cv2

class Stitcher:
      def __init__(self):
        # determine if we are using OpenCV v3.X
        self.isv3 = imutils.is_cv3()

      def stitch(self, images, ratio=0.75, reprojThresh=4.0,
        showMatches=False):
        # unpack the images, then detect keypoints and extract
        # local invariant descriptors from them
        (imageB, imageA) = images


        #(b, g, r) = cv2.split(imageA)
        #imageA = cv2.merge([r,g,b])
        #(b, g, r) = cv2.split(imageB)
        #imageB = cv2.merge([r,g,b])

        (kpsA, featuresA) = self.detectAndDescribe(imageA)
        (kpsB, featuresB) = self.detectAndDescribe(imageB)

        # match features between the two images
        M = self.matchKeypoints(kpsA, kpsB,
            featuresA, featuresB, ratio, reprojThresh)

        # if the match is None, then there aren't enough matched
        # keypoints to create a panorama
        if M is None:
            return None
           # otherwise, apply a perspective warp to stitch the images
        # together
        (matches, H, status) = M
        result = cv2.warpPerspective(imageA, H,
            (imageA.size[1] + imageB.size[1], imageA.size[0]))

        result[0:imageB.size[0], 0:imageB.size[1]] = imageB

        # check to see if the keypoint matches should be visualized
        if showMatches:
            vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
                status)

            # return a tuple of the stitched image and the
            # visualization
            return (result, vis)

        # return the stitched image
        return result
      def detectAndDescribe(self, image):
        # convert the image to grayscale
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # check to see if we are using OpenCV 3.X
        if self.isv3:
            # detect and extract features from the image
            descriptor = cv2.xfeatures2d.SIFT_create()
            (kps, features) = descriptor.detectAndCompute(image, None)

        # otherwise, we are using OpenCV 2.4.X
        else:
            # detect keypoints in the image
            detector = cv2.FeatureDetector_create("SIFT")
            kps = detector.detect(gray)

            # extract features from the image
            extractor = cv2.DescriptorExtractor_create("SIFT")
            (kps, features) = extractor.compute(gray, kps)

        # convert the keypoints from KeyPoint objects to NumPy
        # arrays
        kps = np.float32([kp.pt for kp in kps])

        # return a tuple of keypoints and features
        return (kps, features)
      def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
        ratio, reprojThresh):
        # compute the raw matches and initialize the list of actual
        # matches
        matcher = cv2.DescriptorMatcher_create("BruteForce")
        rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
        matches = []

        # loop over the raw matches
        for m in rawMatches:
            # ensure the distance is within a certain ratio of each
            # other (i.e. Lowe's ratio test)
            if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                matches.append((m[0].trainIdx, m[0].queryIdx))
        # computing a homography requires at least 4 matches
        if len(matches) > 4:
            # construct the two sets of points
            ptsA = np.float32([kpsA[i] for (_, i) in matches])
            ptsB = np.float32([kpsB[i] for (i, _) in matches])

            # compute the homography between the two sets of points
            (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
                reprojThresh)

            # return the matches along with the homograpy matrix
            # and status of each matched point
            return (matches, H, status)

        # otherwise, no homograpy could be computed
        return None
      def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
        # initialize the output visualization image
        (hA, wA) = imageA.shape[:2]
        (hB, wB) = imageB.shape[:2]
        vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
        vis[0:hA, 0:wA] = imageA
        vis[0:hB, wA:] = imageB

        # loop over the matches
        for ((trainIdx, queryIdx), s) in zip(matches, status):
            # only process the match if the keypoint was successfully
            # matched
            if s == 1:
                # draw the match
                ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                cv2.line(vis, ptA, ptB, (0, 255, 0), 1)

        # return the visualization
        return vis  

run.py

# -*- coding: utf-8 -*-
"""
Created on Mon Dec 18 11:13:23 2017

@author: user
"""
# import the necessary packages
import os
os.chdir('/home/user/Desktop/stitcher')


from str import  Stitcher
import argparse
import imutils
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--first", required=True,
    help="path to the first image")
ap.add_argument("-s", "--second", required=True,
    help="path to the second image")
args = vars(ap.parse_args())
# load the two images and resize them to have a width of 400 pixels
# (for faster processing)

#from PIL import Image
#imageA = Image.open(args['first']).convert('RGB')
#imageB = Image.open(args['second']).convert('RGB')

imageA = cv2.imread(args["first"])
imageB = cv2.imread(args["second"])

#imageA = imutils.resize(imageA, width=400)
#imageB = imutils.resize(imageB, width=400)

imageA = cv2.resize(imageA,(2464,832)) #hardcoded values
imageB = cv2.resize(imageB,(2464,832)) #hardcoded values

# stitch the images together to create a panorama
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
cv2.imwrite('stage1.png',result) 


# show the images
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)

正如您所看到的,我调整了图像的大小,使其具有与硬编码值相同的高度和宽度。我本来可以得到最少的两个,把它作为它们的长度和宽度。

当我输入第三张图像时,我无法对其进行充气以匹配stage1的分辨率,或者我也无法降低stage1的分辨率以匹配第三张图像。

P.S。 :imgutils没有给我一个选择长度和宽度的方法。

0 个答案:

没有答案