In python list, we can use list.index(somevalue)
. How can pytorch do this?
For example:
a=[1,2,3]
print(a.index(2))
Then, 1
will be output. How can a pytorch tensor do this without converting it to a python list?
答案 0 :(得分:16)
我认为没有list.index()
到pytorch函数的直接翻译。但是,您可以使用tensor==number
然后使用nonzero()
函数来获得类似的结果。例如:
t = torch.Tensor([1, 2, 3])
print ((t == 2).nonzero())
这段代码返回
1
[torch.LongTensor,大小为1x1]
答案 1 :(得分:4)
对于多维张量,您可以:
(tensor == target_value).nonzero(as_tuple=True)
生成的张量的形状为 number_of_matches x tensor_dimension
。例如,假设 tensor
是一个 3 x 4
张量(这意味着维度为 2),结果将是一个二维张量,其中包含行中匹配项的索引。
tensor = torch.Tensor([[1, 2, 2, 7], [3, 1, 2, 4], [3, 1, 9, 4]])
(tensor == 2).nonzero(as_tuple=False)
>>> tensor([[0, 1],
[0, 2],
[1, 2]])
答案 2 :(得分:1)
可以通过如下转换为numpy来完成
import torch
x = torch.range(1,4)
print(x)
===> tensor([ 1., 2., 3., 4.])
nx = x.numpy()
np.where(nx == 3)[0][0]
===> 2
答案 3 :(得分:0)
对于浮点张量,我使用它来获取张量中元素的索引。
print((torch.abs((torch.max(your_tensor).item()-your_tensor))<0.0001).nonzero())
这里我要获取浮点张量中max_value的索引,也可以像这样放置您的值以获取张量中任何元素的索引。
print((torch.abs((YOUR_VALUE-your_tensor))<0.0001).nonzero())
答案 4 :(得分:0)
用于在一维张量/数组中查找元素的索引 例子
mat=torch.tensor([1,8,5,3])
找到5的索引
five=5
numb_of_col=4
for o in range(numb_of_col):
if mat[o]==five:
print(torch.tensor([o]))
查找2d / 3d张量隐式为1d的元素索引 #ie example.view(元素数量)
示例
mat=torch.tensor([[1,2],[4,3])
#to find index of 2
five = 2
mat=mat.view(4)
numb_of_col = 4
for o in range(numb_of_col):
if mat[o] == five:
print(torch.tensor([o]))
答案 5 :(得分:0)
基于其他人的回答:
t = torch.Tensor([1, 2, 3])
print((t==1).nonzero().item())
答案 6 :(得分:0)
已经给出的答案很好,但是当我尝试没有匹配时,它们无法处理。为此,请参阅:
def index(tensor: Tensor, value, ith_match:int =0) -> Tensor:
"""
Returns generalized index (i.e. location/coordinate) of the first occurence of value
in Tensor. For flat tensors (i.e. arrays/lists) it returns the indices of the occurrences
of the value you are looking for. Otherwise, it returns the "index" as a coordinate.
If there are multiple occurences then you need to choose which one you want with ith_index.
e.g. ith_index=0 gives first occurence.
Reference: https://stackoverflow.com/a/67175757/1601580
:return:
"""
# bool tensor of where value occurred
places_where_value_occurs = (tensor == value)
# get matches as a "coordinate list" where occurence happened
matches = (tensor == value).nonzero() # [number_of_matches, tensor_dimension]
if matches.size(0) == 0: # no matches
return -1
else:
# get index/coordinate of the occurence you want (e.g. 1st occurence ith_match=0)
index = matches[ith_match]
return index
答案 7 :(得分:-1)
import torch
x_data = variable(torch.Tensor([[1.0], [2.0], [3.0]]))
print(x_data.data[0])
>>tensor([1.])