我已经阅读了有关盲签名的白皮书和规范,其中包括维基百科条目,但这些都倾向于关注其背后的数学理论。
使用Crypto ++库在c ++中是否有简明实用的RSA盲签名实现?
答案 0 :(得分:2)
使用Crypto ++库在c ++中是否有简明实用的RSA盲签名实现?
是。 Crypto ++ wiki在Raw RSA | RSA Blind Signature有一个关于RSA盲签名的部分。以下是从wiki中获取的代码。
Crypto ++缺少盲签名类。下面的方法遵循Blind Signatures详述的基本算法。但是,它通过应用s(s'(x)) = x
交叉检查与维基百科不同。交叉检查存在于Chaum's original paper中,但维基文章中缺少这种交叉检查。与Chaum的论文和维基百科的第二个区别是,下面的代码使用H(m)
而不是m
。那是由于Rabin in 1979。
据我们所知,签名方案没有标准。缺乏标准化肯定会引起互操作问题。例如,下面的代码使用SHA256来对要签名的邮件进行哈希处理,而RSA Blind Signature Scheme for golang使用完整域哈希。另请参阅Crypto.SE上的Is there a standard padding/format for RSA Blind Signatures?。
您可能希望首先按Usability of padding scheme in blinded RSA signature?或RSA blind signatures in practice应用填充功能。
#include "cryptlib.h"
#include "integer.h"
#include "nbtheory.h"
#include "osrng.h"
#include "rsa.h"
#include "sha.h"
using namespace CryptoPP;
#include <iostream>
#include <stdexcept>
using std::cout;
using std::endl;
using std::runtime_error;
int main(int argc, char* argv[])
{
// Bob artificially small key pair
AutoSeededRandomPool prng;
RSA::PrivateKey privKey;
privKey.GenerateRandomWithKeySize(prng, 64);
RSA::PublicKey pubKey(privKey);
// Convenience
const Integer& n = pubKey.GetModulus();
const Integer& e = pubKey.GetPublicExponent();
const Integer& d = privKey.GetPrivateExponent();
// Print params
cout << "Pub mod: " << std::hex << pubKey.GetModulus() << endl;
cout << "Pub exp: " << std::hex << e << endl;
cout << "Priv mod: " << std::hex << privKey.GetModulus() << endl;
cout << "Priv exp: " << std::hex << d << endl;
// For sizing the hashed message buffer. This should be SHA256 size.
const size_t SIG_SIZE = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount());
// Scratch
SecByteBlock buff1, buff2, buff3;
// Alice original message to be signed by Bob
SecByteBlock orig((const byte*)"secret", 6);
Integer m(orig.data(), orig.size());
cout << "Message: " << std::hex << m << endl;
// Hash message per Rabin (1979)
buff1.resize(SIG_SIZE);
SHA256 hash1;
hash1.CalculateTruncatedDigest(buff1, buff1.size(), orig, orig.size());
// H(m) as Integer
Integer hm(buff1.data(), buff1.size());
cout << "H(m): " << std::hex << hm << endl;
// Alice blinding
Integer r;
do {
r.Randomize(prng, Integer::One(), n - Integer::One());
} while (!RelativelyPrime(r, n));
// Blinding factor
Integer b = a_exp_b_mod_c(r, e, n);
cout << "Random: " << std::hex << b << endl;
// Alice blinded message
Integer mm = a_times_b_mod_c(hm, b, n);
cout << "Blind msg: " << std::hex << mm << endl;
// Bob sign
Integer ss = privKey.CalculateInverse(prng, mm);
cout << "Blind sign: " << ss << endl;
// Alice checks s(s'(x)) = x. This is from Chaum's paper
Integer c = pubKey.ApplyFunction(ss);
cout << "Check sign: " << c << endl;
if (c != mm)
throw runtime_error("Alice cross-check failed");
// Alice remove blinding
Integer s = a_times_b_mod_c(ss, r.InverseMod(n), n);
cout << "Unblind sign: " << s << endl;
// Eve verifies
Integer v = pubKey.ApplyFunction(s);
cout << "Verify: " << std::hex << v << endl;
// Convert to a string
size_t req = v.MinEncodedSize();
buff2.resize(req);
v.Encode(&buff2[0], buff2.size());
// Hash message per Rabin (1979)
buff3.resize(SIG_SIZE);
SHA256 hash2;
hash2.CalculateTruncatedDigest(buff3, buff3.size(), orig, orig.size());
// Constant time compare
bool equal = buff2.size() == buff3.size() && VerifyBufsEqual(
buff2.data(), buff3.data(), buff3.size());
if (!equal)
throw runtime_error("Eve verified failed");
cout << "Verified signature" << endl;
return 0;
}
以下是构建和运行程序的结果:
$ g++ blind.cxx ./libcryptopp.a -o blind.exe
$ ./blind.exe
Pub mod: b55dc5e79993680fh
Pub exp: 11h
Priv mod: b55dc5e79993680fh
Priv exp: 1b4fc70ff2e97f1h
Message: 736563726574h
H(m): 2bb80d537b1da3e3h
Random: 72dd6819f0fc5e5fh
Blinded msg: 27a2e2e5e6f4fbfh
Blind sign: 84e7039495bf0570h
Check sign: 27a2e2e5e6f4fbfh
Unblind sign: 61054203e843f380h
Verify: 2bb80d537b1da3e3h
Verified signature