RSA加密 - 如何正确选择p,q和e?

时间:2014-02-24 09:21:26

标签: cryptography rsa

最近,我在发现 e n d 值后遇到了一些麻烦。 我有这套 (p=3, q=11)

所以n = 33Euler(n)=20。 我选择 e=3,计算d = 7。 对于消息x=49,签名将是 s = x^d mod n = 49^7 mod 33 = 2 5。 有人会像ver(s) = s^e mod n = 16 != x (Fake?)

那样验证它

我做错了什么。

2 个答案:

答案 0 :(得分:1)

这没有错:

49 = 16 mod 33

答案 1 :(得分:1)

正如之前的回答者(而且)简洁地说 - 天真的RSA只会在小于模数(n)时恢复原始值。您的消息x = 49大于您的模数(n = 33),因此您无法将密文解密回x的原始值。

如果您要使用较小的消息再次尝试,例如x = 25事情会很好:

加密:

C = xe mod n
  = 253 mod 33
  = 16

解密:

x = Cd mod n
  = 167 mod 33
  = 25