R map()2级进入列表

时间:2017-12-17 23:07:17

标签: r nested-lists purrr

我坚持做嵌套的map()或者map()管道。

我在对象"输出"中有4个输出的列表。在四个输出中的每一个中都有一个元素"参数"这是3个元素的列表。第一个要素是"非标准化"

从View工具中我可以看到代码从任何一个输出中获取非标准化参数

output[["ar.4g_gm.pr.dual..semi.inv..phantom.out"]][["parameters"]][["unstandardized"]])

我试图使用map over outputs提取传输到map_dfr的参数来提取和rbind非标准化参数,这样就完成了工作......

x<- map(output,"parameters") %>% map_dfr("unstandardized")

但我希望在结果列中包含顶级列表元素名称(即输出文件)。

有没有办法嵌套地图函数或其他一些语法来将4个顶级列表元素名称放入一列?

这是带有虚拟数据的语句。我工作,但我需要cbind rep(c&#34; out1&#34;,&#34; out2&#34;,&#34; out3&#34;,每个= 5)到结果我希望它发生w / o cbind。

output <- list(out1=list(e1=c(1,2,3),
                          e2=c(T,F,T),
                         parm=list(a = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   b = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   stand = cbind(as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),grp=rep(1,times=5)))),
               out2=list(e1=c(3,4,5),
                         e2=c(T,F,T),
                         parm=list(a = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   b = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   stand = cbind(as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),grp=rep(2,times=5)))),
               out3=list(e1=c(1,2,3),
                         e2=c(T,F,T),
                         parm=list(a = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   b = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   stand = cbind(as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),grp=rep(3,times=5)))) )

output[["out1"]][["parm"]][["stand"]]               

map(output,"parm") %>% map_dfr("stand")

2 个答案:

答案 0 :(得分:1)

output <- list(out1=list(e1=c(1,2,3),
                         e2=c(T,F,T),
                         parm=list(a = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   b = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   stand = cbind(as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),grp=rep(1,times=5)))),
               out2=list(e1=c(3,4,5),
                         e2=c(T,F,T),
                         parm=list(a = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   b = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   stand = cbind(as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),grp=rep(2,times=5)))),
               out3=list(e1=c(1,2,3),
                         e2=c(T,F,T),
                         parm=list(a = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   b = as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),
                                   stand = cbind(as.data.frame(matrix(sample(101:999,size=40,replace=TRUE),nrow=5)),grp=rep(3,times=5)))) )

library(tidyverse)

map(output,"parm") %>% 
  map("stand") %>%
  map2(names(output), ~ cbind(.x, df_name=.y))

# $out1
#    V1  V2  V3  V4  V5  V6  V7  V8 grp df_name
# 1 695 356 109 463 688 496 842 310   1    out1
# 2 922 450 680 170 567 921 530 419   1    out1
# 3 568 604 626 446 364 206 541 644   1    out1
# 4 210 237 300 432 366 945 413 368   1    out1
# 5 529 224 392 181 156 126 255 283   1    out1
# 
# $out2
#    V1  V2  V3  V4  V5  V6  V7  V8 grp df_name
# 1 320 429 109 749 394 657 690 764   2    out2
# 2 580 296 755 101 385 582 956 547   2    out2
# 3 939 122 697 146 747 108 672 836   2    out2
# 4 550 972 128 396 874 224 158 133   2    out2
# 5 923 650 888 895 742 166 533 225   2    out2
# 
# $out3
#    V1  V2  V3  V4  V5  V6  V7  V8 grp df_name
# 1 347 928 777 656 503 783 847 620   3    out3
# 2 496 586 919 991 810 797 779 202   3    out3
# 3 644 731 441 896 284 514 954 981   3    out3
# 4 303 803 945 806 938 692 587 775   3    out3
# 5 243 666 719 823 133 773 585 461   3    out3

答案 1 :(得分:1)

library(purrr)
library(dplyr)

map(output, pluck, "parm", "stand") %>% 
  bind_rows(.id = "foo")
#     foo  V1  V2  V3  V4  V5  V6  V7  V8 grp
# 1  out1 845 527 296 902 358 447 317 347   1
# 2  out1 679 473 290 482 349 691 144 731   1
# 3  out1 842 574 135 894 628 542 757 174   1
# 4  out1 379 548 836 176 796 744 889 922   1
# 5  out1 498 837 492 965 255 508 138 689   1
# 6  out2 203 599 158 355 793 884 722 210   2
# 7  out2 543 693 484 195 511 174 793 654   2
# 8  out2 593 839 296 926 387 788 260 143   2
# 9  out2 373 363 323 939 416 348 792 211   2
# 10 out2 773 218 616 806 119 304 775 775   2
# 11 out3 171 217 859 899 664 737 114 837   3
# 12 out3 953 225 600 581 528 388 714 899   3
# 13 out3 615 550 860 134 667 136 987 993   3
# 14 out3 494 407 726 128 559 418 782 832   3
# 15 out3 729 734 432 354 716 288 734 264   3