我的目标是实现具有整流线性单位nn.relu()
和1024个隐藏节点的1隐藏层神经网络。
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
import os
import sys
import tarfile
from IPython.display import display, Image
from scipy import ndimage
from sklearn.linear_model import LogisticRegression
from six.moves.urllib.request import urlretrieve
from six.moves import cPickle as pickle
from six.moves import range
import tensorflow as tf
url = 'https://commondatastorage.googleapis.com/books1000/'
last_percent_reported = None
data_root = '.' # Change me to store data elsewhere
def download_progress_hook(count, blockSize, totalSize):
"""A hook to report the progress of a download. This is mostly intended for users with
slow internet connections. Reports every 5% change in download progress.
"""
global last_percent_reported
percent = int(count * blockSize * 100 / totalSize)
if last_percent_reported != percent:
if percent % 5 == 0:
sys.stdout.write("%s%%" % percent)
sys.stdout.flush()
else:
sys.stdout.write(".")
sys.stdout.flush()
last_percent_reported = percent
def maybe_download(filename, expected_bytes, force=False):
"""Download a file if not present, and make sure it's the right size."""
dest_filename = os.path.join(data_root, filename)
if force or not os.path.exists(dest_filename):
print('Attempting to download:', filename)
filename, _ = urlretrieve(url + filename, dest_filename, reporthook=download_progress_hook)
print('\nDownload Complete!')
statinfo = os.stat(dest_filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', dest_filename)
else:
raise Exception(
'Failed to verify ' + dest_filename + '. Can you get to it with a browser?')
return dest_filename
# If error in download get it here: http://yaroslavvb.com/upload/notMNIST/
train_filename = maybe_download('notMNIST_large.tar.gz', 247336696)
test_filename = maybe_download('notMNIST_small.tar.gz', 8458043)
num_classes = 10
np.random.seed(133)
def maybe_extract(filename, force=False):
root = os.path.splitext(os.path.splitext(filename)[0])[0] # remove .tar.gz
if os.path.isdir(root) and not force:
# You may override by setting force=True.
print('%s already present - Skipping extraction of %s.' % (root, filename))
else:
print('Extracting data for %s. This may take a while. Please wait.' % root)
tar = tarfile.open(filename)
sys.stdout.flush()
tar.extractall(data_root)
tar.close()
data_folders = [
os.path.join(root, d) for d in sorted(os.listdir(root))
if os.path.isdir(os.path.join(root, d))]
if len(data_folders) != num_classes:
raise Exception(
'Expected %d folders, one per class. Found %d instead.' % (
num_classes, len(data_folders)))
print(data_folders)
return data_folders
train_folders = maybe_extract(train_filename)
test_folders = maybe_extract(test_filename)
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f,encoding='latin1')
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
image_size = 28
num_labels = 10
def reformat(dataset, labels):
dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
# Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
batch_size = 128
hidden_nodes = 1024
graph = tf.Graph()
with graph.as_default():
x_train = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size))
y_ = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
x_valid = tf.constant(valid_dataset)
x_test = tf.constant(test_dataset)
hidden_layer = tf.contrib.layers.fully_connected(x_train,hidden_nodes)
logits = tf.contrib.layers.fully_connected(hidden_layer, num_labels, activation_fn=None)
loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=y_ ) )
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
train_prediction = tf.nn.softmax(logits)
valid_relu = tf.contrib.layers.fully_connected(x_valid,hidden_nodes)
valid_prediction = tf.nn.softmax(tf.contrib.layers.fully_connected(valid_relu,num_labels))
test_relu = tf.contrib.layers.fully_connected(x_test,hidden_nodes, activation_fn=None)
test_prediction = tf.nn.softmax(tf.contrib.layers.fully_connected(test_relu,num_labels, activation_fn=None))
steps = 3001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
for step in range(steps):
# Selecting some portion within training data
# Note: Better to randomize dataset for Minibatch SGD
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate the Minibatch
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Feed the batch size to dict
feed_dict = {x_train: batch_data, y_:batch_labels}
_, l, prediction = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict)
if(step % 500 == 0):
print("Minibatch Loss at step %d: %f"% (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(prediction,batch_labels))
print("Validation accuracy :%.1f%% "% accuracy(valid_prediction.eval(),valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
我关注this tutorial,它的准确度比我的代码更高。
我希望通过使用tf.contrib.layers.fully_connected
作为隐藏图层来实现类似的结果吗?
修改
在logits中将输入更改为hidden_layer
重写了valid_relu,valid_prediction,test_relu,test_prediction
结果:
Minibatch Loss at step 0: 2.389448
Minibatch accuracy: 5.5%
Validation accuracy :8.2%
Minibatch Loss at step 500: 0.342108
Minibatch accuracy: 92.2%
Validation accuracy :8.2%
Minibatch Loss at step 1000: 0.543803
Minibatch accuracy: 84.4%
Validation accuracy :8.2%
Minibatch Loss at step 1500: 0.299978
Minibatch accuracy: 93.8%
Validation accuracy :8.2%
Minibatch Loss at step 2000: 0.294090
Minibatch accuracy: 93.8%
Validation accuracy :8.2%
Minibatch Loss at step 2500: 0.333070
Minibatch accuracy: 90.6%
Validation accuracy :8.2%
Minibatch Loss at step 3000: 0.365324
Minibatch accuracy: 89.1%
Validation accuracy :8.2%
Test accuracy: 6.8%
答案 0 :(得分:1)
你出发了。这里有一些补充:
com.sun.org.apache.xerces.internal.parsers.SAXParser
的偏好中删除了手动FC图层,因此也请删除tf.contrib.layers.fully_connected
和w
。这将节省您为这些权重选择正确的初始化的时间:b
hidden_layer = tf.contrib.layers.fully_connected(x_train, hidden_nodes)
logits = tf.contrib.layers.fully_connected(hidden_layer, num_labels,
activation_fn=None)
和valid_dataset
推送为test_dataset
并评估feed_dict
。train_prediction
# BAD idea: this potentially large value is stored in the graph, can lead to OOM
x_valid = tf.constant(valid_dataset)
x_test = tf.constant(test_dataset)
...
# BAD idea: model duplication
valid_relu = tf.contrib.layers.fully_connected(x_valid, hidden_nodes)
valid_prediction = tf.nn.softmax(tf.matmul(valid_relu, w) + b)
test_relu = tf.contrib.layers.fully_connected(x_test, hidden_nodes)
test_prediction = tf.nn.softmax(tf.matmul(test_relu, w) + b)
是一个实验包。特别是,tensorflow.contrib
层已经毕业了#34;到tf.layers.dense
。它做了同样的工作,但它的API保证稳定,而fully_connected
可以在下一个版本中弃用。