使用scipy fft计算信号的自相关给出了直接计算的不同答案

时间:2017-12-16 23:08:19

标签: python numpy scipy fft

我正在尝试使用自相关是功率谱的逆傅里叶变换的属性来计算信号的自相关。但是,当我使用scipy(或numpy)fft执行此操作并与自相关函数的直接计算进行比较时,我得到了错误的答案,具体而言,fft版本在较大的延迟时间内以较小的负值关闭,这是显然错了。

我的MWE低于输出。我使用fft错了吗?

import numpy as np
import matplotlib.pyplot as pl
from scipy.fftpack import fft, ifft


def autocorrelation(x) :
    xp = (x - np.average(x))/np.std(x)
    f = fft(xp)
    p = np.absolute(f)**2
    pi = ifft(p)
    return np.real(pi)[:len(xp)/2]/(len(xp))

def autocorrelation2(x):
    maxdelay = len(x)/5
    N = len(x)
    mean = np.average(x)
    var = np.var(x)
    xp = (x - mean)/np.sqrt(var)
    autocorrelation = np.zeros(maxdelay)
    for r in range(maxdelay):
        for k in range(N-r):
            autocorrelation[r] += xp[k]*xp[k+r]
        autocorrelation[r] /= float(N-r)
    return autocorrelation


def autocorrelation3(x):
    xp = (x - np.mean(x))/np.std(x)
    result = np.correlate(xp, xp, mode='full')
    return result[result.size/2:]/len(xp)

def main():
    t = np.linspace(0,20,1024)
    x = np.exp(-t**2)
    pl.plot(t[:200], autocorrelation(x)[:200],label='scipy fft')
    pl.plot(t[:200], autocorrelation2(x)[:200],label='direct autocorrelation')
    pl.plot(t[:200], autocorrelation3(x)[:200],label='numpy correlate')
    pl.legend()
    pl.show()


if __name__=='__main__':
    main()

enter image description here

1 个答案:

答案 0 :(得分:8)

离散FT假定信号是周期性的。因此,在基于fft的代码中,您正在计算环绕自相关。为了避免这种情况,你必须做某种形式的0 - 填充:

def autocorrelation(x):
    xp = ifftshift((x - np.average(x))/np.std(x))
    n, = xp.shape
    xp = np.r_[xp[:n//2], np.zeros_like(xp), xp[n//2:]]
    f = fft(xp)
    p = np.absolute(f)**2
    pi = ifft(p)
    return np.real(pi)[:n//2]/(np.arange(n//2)[::-1]+n//2)