我试图让我的程序运行得更快,使用线程,但需要花费太多时间。代码必须计算两种矩阵(word_level,其中我比较查询的每两个单词和一个文档,sequence_level:我将查询与文档上的不同序列进行比较。以下是主要函数:
import threading
from threading import Thread
def sim_QxD_word(query, document, model, alpha, outOfVocab, lock): #word_level
sim_w = {}
for q in set(query.split()):
sim_w[q] = {}
qE = []
if q in model.vocab:
qE = model[q]
elif q in outOfVocab:
qE = outOfVocab[q]
else:
qE = numpy.random.rand(model.layer1_size) # random vector
lock.acquire()
outOfVocab[q] = qE
lock.release()
for d in set(document.split()):
dE = []
if d in model.vocab:
dE = model[d]
elif d in outOfVocab:
dE = outOfVocab[d]
else:
dE = numpy.random.rand(model.layer1_size) # random vector
lock.acquire()
outOfVocab[d] = dE
lock.release()
sim_w[q][d] = sim(qE,dE,alpha)
return (sim_w, outOfVocab)
def sim_QxD_sequences(query, document, model, outOfVocab, alpha, lock): #sequence_level
# 1. extract document sequences
document_sequences = []
for i in range(len(document.split())-len(query.split())):
document_sequences.append(" ".join(document.split()[i:i+len(query.split())]))
# 2. compute similarities with a query sentence
lock.acquire()
query_vec, outOfVocab = avg_sequenceToVec(query, model, outOfVocab, lock)
lock.release()
sim_QxD = {}
for s in document_sequences:
lock.acquire()
s_vec, outOfVocab = avg_sequenceToVec(s, model, outOfVocab, lock)
lock.release()
sim_QxD[s] = sim(query_vec, s_vec, alpha)
return (sim_QxD, outOfVocab)
def word_level(q_clean, d_text, model, alpha, outOfVocab, out_w, q, ext_id, lock):
#print("in word_level")
sim_w, outOfVocab = sim_QxD_word(q_clean, d_text, model, alpha, outOfVocab, lock)
numpy.save(join(out_w, str(q)+ext_id+"word_interactions.npy"), sim_w)
def sequence_level(q_clean, d_text, model, outOfVocab, alpha, out_s, q, ext_id, lock):
#print("in sequence_level")
sim_s, outOfVocab = sim_QxD_sequences(q_clean, d_text, model, outOfVocab, alpha, lock)
numpy.save(join(out_s, str(q)+ext_id+"sequence_interactions.npy"), sim_s)
def extract_AllFeatures_parall(q_clean, d_text, model, alpha, outOfVocab, out_w, q, ext_id, out_s, lock):
#print("in extract_AllFeatures")
thW=Thread(target = word_level, args=(q_clean, d_text, model, alpha, outOfVocab, out_w, q, ext_id, lock))
thW.start()
thS=Thread(target = sequence_level, args=(q_clean, d_text, model, outOfVocab, alpha, out_s, q, ext_id, lock))
thS.start()
thW.join()
thS.join()
def process_documents(documents, index, model, alpha, outOfVocab, out_w, out_s, queries, stemming, stoplist, q):
#print("in process_documents")
q_clean = clean(queries[q],stemming, stoplist)
lock = threading.Lock()
for d in documents:
ext_id, d_text = reaDoc(d, index)
extract_AllFeatures_parall(q_clean, d_text, model, alpha, outOfVocab, out_w, q, ext_id, out_s, lock)
outOfVocab={} # shared variable over all threads
queries = {"1":"first query", ...} # can contain 200 elements
....
threadsList = []
for q in queries.keys():
thread = Thread(target = process_documents, args=(documents, index, model, alpha, outOfVocab, out_w, out_s, queries, stemming, stoplist, q))
thread.start()
threadsList.append(thread)
for th in threadsList:
th.join()
如何优化不同的功能以使其运行更快? 在此先感谢您的回复。
答案 0 :(得分:1)
我将在本回答中专注于这些代码行
thread = Thread(target = process_documents(documents, index, model, alpha, outOfVocab, out_w, out_s, queries, stemming, stoplist, q))
thread.start()
来自文档https://docs.python.org/2/library/threading.html
target是run()方法调用的可调用对象。 默认为None,表示不调用任何内容。
目标应为可调用。在您的代码中,您传递了对 process_documents 的调用结果。你想要做的是说 target = process_documents (即传入函数本身 - 这是一个可调用的),并根据需要传入args / kwargs。
当您的代码按顺序运行时,对process_documents的每次调用都发生在同一个线程中。您需要为线程提供您希望它执行的工作,而不是作业的结果。