我有以下代码,通过从第一个方程开始并在x = 0时找到y,然后将y放入第二个方程并找到x,然后将x放回第一个方程等,从而求解联立线性方程。 ..
显然,这有可能达到无穷大,所以如果它达到+ -inf那么它会交换方程的顺序,所以螺旋/梯子会反过来。
这似乎有用,因为我不是一个好的数学家,我可以证明它总会超越预感,当然有些线条永远不会满足(我知道如何使用矩阵和线性代数直接检查他们是否永远不会相遇,但我对那个atm并不那么感兴趣。
是否有更好的方法可以“回避”答案?我对整个解决方案使用数学函数或numpy不感兴趣 - 我希望能够对解决方案进行编码。我不介意使用库来提高性能,例如使用某种统计方法。
从编码或数学的角度来看,这可能是一个非常天真的问题,但如果是这样,我想知道为什么!
我的代码如下:
# A python program to solve 2d simultaneous equations
# by iterating over coefficients in spirals
import numpy as np
def Input(coeff_or_constant, var, lower, upper):
val = int(input("Let the {} {} be a number between {} and {}: ".format(coeff_or_constant, var, lower, upper)))
if val >= lower and val <= upper :
return val
else:
print("Invalid input")
exit(0)
def Equation(equation_array):
a = Input("coefficient", "a", 0, 10)
b = Input("coefficient", "b", 0, 10)
c = Input("constant", "c", 0, 10)
equation_list = [a, b, c]
equation_array.append(equation_list)
return equation_array
def Stringify_Equations(equation_array):
A = str(equation_array[0][0])
B = str(equation_array[0][1])
C = str(equation_array[0][2])
D = str(equation_array[1][0])
E = str(equation_array[1][1])
F = str(equation_array[1][2])
eq1 = str(A + "y = " + B + "x + " + C)
eq2 = str(D + "y = " + E + "x + " + F)
print(eq1)
print(eq2)
def Spiral(equation_array):
a = equation_array[0][0]
b = equation_array[0][1]
c = equation_array[0][2]
d = equation_array[1][0]
e = equation_array[1][1]
f = equation_array[1][2]
# start at y when x = 0
x = 0
infinity_flag = False
count = 0
coords = []
coords.append([0, 0])
coords.append([1, 1])
# solve equation 2 for x when y = START
while not (coords[0][0] == coords[1][0]):
try:
y = ( ( b * x ) + c ) / a
except:
y = 0
print(y)
try:
x = ( ( d * y ) - f ) / e
except:
x = 0
if x >= 100000 or x <= -100000:
count = count + 1
if count >= 100000:
print("It\'s looking like these linear equations don\'t intersect!")
break
print(x)
new_coords = [x, y]
coords.append(new_coords)
coords.pop(0)
if not ((x == float("inf") or x == float("-inf")) and (y == float("inf") or y == float("-inf"))):
pass
else:
infinity_flag if False else True
if infinity_flag == False:
# if the spiral is divergent this switches the equations around so it converges
# the infinity_flag is to check if both spirals returned infinity meaning the lines do not intersect
# I think this would mostly work for linear equations, but for other kinds of equations it might not
x = 0
a = equation_array[1][0]
b = equation_array[1][1]
c = equation_array[1][2]
d = equation_array[0][0]
e = equation_array[0][1]
f = equation_array[0][2]
infinity_flag = False
else:
print("These linear equations do not intersect")
break
y = round(y, 3)
x = round(x, 3)
print(x, y)
equation_array = []
print("Specify coefficients a and b, and a constant c for equation 1")
equations = Equation(equation_array)
print("Specify coefficients a and b, and a constant c for equation 1")
equations = Equation(equation_array)
print(equation_array)
Stringify_Equations(equation_array)
Spiral(equation_array)