所以我试图创建一个非常简单的RSA加密/解密程序,我只加密/解密int数字。除一个问题外,一切正常。有时我的解密号码(消息)与我的原始号码(我需要加密和解密的消息)不匹配。只要我输入的数字(消息)接近我的'n'变量中的数字(n = p * q,其中p和q是素数),这似乎就会发生。我现在浏览了一下Stackoverflow并发现RSA算法无法正确解密大于'n'的消息。但在我的情况下,它无法解密接近'n'的消息。如果n = 35并且我的输入数字(要加密/解密的数字)是32,则程序不能正确地将其解密回32,尽管32低于35(适用于31,30但是......)。为什么呢?
代码:
import math
def isPrime(n):
if n>=2:
for m in range(2, int(math.sqrt(n)+1)):
if n%m == 0:
return False
return True
else:
return False
def gcd(x, y):
while y != 0:
(x, y) = (y, x % y)
return x
def phi(n):
amount = 0
for k in range(1, n + 1):
if gcd(n, k) == 1:
amount += 1
return amount
def findPubE(n, phiN):
for e in range(3, n, 2):
if gcd(e,phiN)==1:
return e
else:
raise AssertionError("cannot find 'e'")
def multiplicative_inverse(a, b):
"""Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
"""
# r = gcd(a,b) i = multiplicitive inverse of a mod b
# or j = multiplicitive inverse of b mod a
# Neg return values for i or j are made positive mod b or a respectively
# Iterateive Version is faster and uses much less stack space
x = 0
y = 1
lx = 1
ly = 0
oa = a # Remember original a/b to remove
ob = b # negative values from return results
while b != 0:
q = a // b
(a, b) = (b, a % b)
(x, lx) = ((lx - (q * x)), x)
(y, ly) = ((ly - (q * y)), y)
if lx < 0:
lx += ob # If neg wrap modulo orignal b
if ly < 0:
ly += oa # If neg wrap modulo orignal a
# return a , lx, ly # Return only positive values
return lx
def encrypt(m,e,n):
return (m^(e)) % n
def decrypt(M, d):
return M^(d)
def main():
p=int(input("Input first prime number (p): "))
q=int(input("Input second prime number (q): "))
n=p*q
print("n = ",n)
msg= int(input("Input message: "))
assert msg < n
phiN=(p-1)*(q-1)
e = findPubE(n,phiN)
d = multiplicative_inverse(e,phiN)
encryptedMsg = encrypt(msg,e,n)
decryptedMsg = decrypt(encryptedMsg,d)
assert isPrime(p) and isPrime(q)
print("phi(n) = ",phiN)
print("e = ",e)
print("d = ",d)
print("Encrypted message: ",encryptedMsg)
print("Decrypted message: ",decryptedMsg)
main()
答案 0 :(得分:0)
解决了!我在代码中犯了两个小错误。第一个是我认为“^”符号在Python中意味着“强大的力量”(正确的符号是“**”),第二个是忘记在我的行中添加“mod n” decrypt()函数(所以return M**(d) % n
代替return M^(d)
)。