使用pandas使用read_csv读取标头

时间:2017-12-10 11:09:14

标签: python pandas

如果有CSV文件需要跳过3行并读取标题。 使用以下代码有什么区别:

  • pd.read_csv('example.csv', skiprows = 3, header = 1)

  • pd.read_csv('example.csv', header = 4)

1 个答案:

答案 0 :(得分:0)

演示:

源文件:

#
#
#
A,B,C
-0.8221405906050608,0.36567801665104493,-0.379336722063627
1.0601665897050705,1.1430601510100493,2.0085115463969614
0.4071960452282494,-0.10165523669413325,0.9265436970363733
-0.3085655056815222,0.5438044940307988,-2.1299177432207785
1.1371707144127696,1.7668090514496102,0.7607193776554232

不同的方法:

skiprows = 3:

In [65]: pd.read_csv(fn, skiprows=3)
Out[65]:
          A         B         C
0 -0.822141  0.365678 -0.379337
1  1.060167  1.143060  2.008512
2  0.407196 -0.101655  0.926544
3 -0.308566  0.543804 -2.129918
4  1.137171  1.766809  0.760719

相同(显式)版本:

In [69]: pd.read_csv(fn, skiprows=3, header=0)
Out[69]:
          A         B         C
0 -0.822141  0.365678 -0.379337
1  1.060167  1.143060  2.008512
2  0.407196 -0.101655  0.926544
3 -0.308566  0.543804 -2.129918
4  1.137171  1.766809  0.760719

skiprows = 3,header = 1:

In [70]: pd.read_csv(fn, skiprows=3, header=1)
Out[70]:
   -0.8221405906050608  0.36567801665104493  -0.379336722063627
0             1.060167             1.143060            2.008512
1             0.407196            -0.101655            0.926544
2            -0.308566             0.543804           -2.129918
3             1.137171             1.766809            0.760719

头= 4:

In [71]: pd.read_csv(fn, header=4)
Out[71]:
   -0.8221405906050608  0.36567801665104493  -0.379336722063627
0             1.060167             1.143060            2.008512
1             0.407196            -0.101655            0.926544
2            -0.308566             0.543804           -2.129918
3             1.137171             1.766809            0.760719

头= [4]:

In [72]: pd.read_csv(fn, header=[4])
Out[72]:
   -0.8221405906050608  0.36567801665104493  -0.379336722063627
0             1.060167             1.143060            2.008512
1             0.407196            -0.101655            0.926544
2            -0.308566             0.543804           -2.129918
3             1.137171             1.766809            0.760719