TensorFlow:`tf.data.Dataset.from_generator()`不适用于Python 3.x上的字符串

时间:2017-12-07 23:49:20

标签: tensorflow tensorflow-datasets

我需要遍历大量图像文件并将数据提供给tensorflow。我通过生成器函数创建了Dataset,生成文件路径名称作为字符串,然后使用map将字符串路径转换为图像数据。但它失败了,因为生成字符串值不起作用,如下所示。有没有修复或解决这个问题?

2017-12-07 15:29:05.820708: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
producing data/miniImagenet/val/n01855672/n0185567200001000.jpg
2017-12-07 15:29:06.009141: W tensorflow/core/framework/op_kernel.cc:1192] Unimplemented: Unsupported object type str
2017-12-07 15:29:06.009215: W tensorflow/core/framework/op_kernel.cc:1192] Unimplemented: Unsupported object type str
     [[Node: PyFunc = PyFunc[Tin=[DT_INT64], Tout=[DT_STRING], token="pyfunc_1"](arg0)]]
Traceback (most recent call last):
  File "/Users/me/.tox/tf2/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1323, in _do_call
    return fn(*args)
  File "/Users/me/.tox/tf2/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1302, in _run_fn
    status, run_metadata)
  File "/Users/me/.tox/tf2/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 473, in __exit__
    c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.UnimplementedError: Unsupported object type str
     [[Node: PyFunc = PyFunc[Tin=[DT_INT64], Tout=[DT_STRING], token="pyfunc_1"](arg0)]]
     [[Node: IteratorGetNext = IteratorGetNext[output_shapes=[[?,21168]], output_types=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](OneShotIterator)]]

测试代码如下所示。它可以与from_tensor_slices一起正常工作,或者首先将文件名列表放在张量中。然而,要么努力就会耗尽GPU内存。

import tensorflow as tf

if __name__ == "__main__":
    file_names = ['data/miniImagenet/val/n01855672/n0185567200001000.jpg',
                  'data/miniImagenet/val/n01855672/n0185567200001005.jpg']
    # note: converting the file list to tensor and returning an index from generator works
    # path_to_indexes = {p: i for i, p in enumerate(file_names)}
    # file_names_tensor = tf.convert_to_tensor(file_names)

    def dataset_producer():
        for s in file_names:
            print('producing', s)
            yield s
    dataset = tf.data.Dataset.from_generator(dataset_producer, output_types=(tf.string),
                                             output_shapes=(tf.TensorShape([])))

    # note: this would also work
    # dataset = tf.data.Dataset.from_tensor_slices(tf.convert_to_tensor(file_names))

    def read_image(filename):
        # filename = file_names_tensor[filename_index]
        image_file = tf.read_file(filename, name='read_file')
        image = tf.image.decode_jpeg(image_file, channels=3)
        image.set_shape((84,84,3))
        image = tf.reshape(image, [21168])
        image = tf.cast(image, tf.float32) / 255.0
        return image

    dataset = dataset.map(read_image)
    dataset = dataset.batch(2)
    data_iterator = dataset.make_one_shot_iterator()
    images = data_iterator.get_next()
    print('images', images)
    max_value = tf.argmax(images)
    with tf.Session() as session:
        result = session.run(max_value)
        print(result)

1 个答案:

答案 0 :(得分:6)

在TensorFlow 1.4发布之后,这是一个影响Python 3.x的错误fixed。从1.5开始,TensorFlow的所有版本都包含修复程序。

如果您只使用早期版本,则解决方法是在将字符串从生成器返回之前将其转换为bytes。以下代码应该有效:

def dataset_producer():
    for s in file_names:
        print('producing', s)
        yield s.encode('utf-8')  # Convert `s` to `bytes`.

dataset = tf.data.Dataset.from_generator(dataset_producer, output_types=(tf.string),
                                         output_shapes=(tf.TensorShape([])))