我想使用tf.data.Dataset
函数创建多个from_generator()
。我想向生成器函数(raw_data_gen
)发送一个参数。这个想法是生成器函数将根据发送的参数产生不同的数据。这样,我希望raw_data_gen
能够提供培训,验证或测试数据。
training_dataset = tf.data.Dataset.from_generator(raw_data_gen, (tf.float32, tf.uint8), ([None, 1], [None]), args=([1]))
validation_dataset = tf.data.Dataset.from_generator(raw_data_gen, (tf.float32, tf.uint8), ([None, 1], [None]), args=([2]))
test_dataset = tf.data.Dataset.from_generator(raw_data_gen, (tf.float32, tf.uint8), ([None, 1], [None]), args=([3]))
以这种方式尝试呼叫from_generator()
时收到的错误消息是:
TypeError: from_generator() got an unexpected keyword argument 'args'
这里是raw_data_gen
函数,尽管我不确定您是否需要此函数,因为我的直觉是问题在于调用from_generator()
:
def raw_data_gen(train_val_or_test):
if train_val_or_test == 1:
#For every filename collected in the list
for filename, lab in training_filepath_label_dict.items():
raw_data, samplerate = soundfile.read(filename)
try: #assume the audio is stereo, ready to be sliced
raw_data = raw_data[:,0] #raw_data is a np.array, just take first channel with slice
except IndexError:
pass #this must be mono audio
yield raw_data, lab
elif train_val_or_test == 2:
#For every filename collected in the list
for filename, lab in validation_filepath_label_dict.items():
raw_data, samplerate = soundfile.read(filename)
try: #assume the audio is stereo, ready to be sliced
raw_data = raw_data[:,0] #raw_data is a np.array, just take first channel with slice
except IndexError:
pass #this must be mono audio
yield raw_data, lab
elif train_val_or_test == 3:
#For every filename collected in the list
for filename, lab in test_filepath_label_dict.items():
raw_data, samplerate = soundfile.read(filename)
try: #assume the audio is stereo, ready to be sliced
raw_data = raw_data[:,0] #raw_data is a np.array, just take first channel with slice
except IndexError:
pass #this must be mono audio
yield raw_data, lab
else:
print("generator function called with an argument not in [1, 2, 3]")
raise ValueError()
答案 0 :(得分:4)
您需要基于raw_data_gen
定义一个不带任何参数的新函数。您可以使用lambda
关键字来完成此操作。
training_dataset = tf.data.Dataset.from_generator(lambda: raw_data_gen(train_val_or_test=1), (tf.float32, tf.uint8), ([None, 1], [None]))
...
现在,我们正在将一个不带任何参数的函数传递给from_generator
,但是它将简单地充当raw_data_gen
并将参数设置为1。验证和测试集,分别通过2和3。
答案 1 :(得分:3)
对于 Tensorflow 2.4:
training_dataset = tf.data.Dataset.from_generator(
raw_data_gen,
args=(1),
output_types=(tf.float32, tf.uint8),
output_shapes=([None, 1], [None]))