由keras学习的LSTM网络的Foward传球

时间:2017-12-07 19:17:14

标签: tensorflow keras lstm recurrent-neural-network

我有以下代码,我希望从2层LSTM获得正向传递:

"""
this is a simple numerical example of LSTM forward pass to allow deep understanding
the LSTM is trying to learn the sin function by learning to predict the next value after a sequence of 3 inputs
    example 1: {0.583, 0.633, 0.681} --> {0.725}, these values correspond to
               {sin(35.66), sin(39.27}, sin(42.92)} --> {sin(46.47)}
    example 2: {0.725, 0.767, 0.801} --> {0.849}, these values correspond to
               {sin(46.47), sin(50.09), sin(53.23)} --> {sin(58.10)}

example tested:  [[['0.725323664']
                   ['0.7671179']
                   ['0.805884672']]]
predicted_instance:  [ 0.83467698]


training example pair:  [['0.680666907']
 ['0.725323664']
 ['0.7671179']] 0.805884672

"""
import numpy as np


# linear activation matrix-wise (works also element-wise)
def linear(x):
    return x


# sigmoid function matrix-wise (works also element-wise)
def sigmoid(x):
    return 1/(1 + np.exp(-x))


# hard sigmoid function element wise
def hard_sig(x):
    # in Keras for both tensorflow and theano backend
    return np.max(np.array([0.0, np.min(np.array([1.0, x * 0.2 + 0.5]))]))
    # Courbariaux et al. 2016 (Binarized Neural Networks)
    # return np.max(np.array([0.0, np.min(np.array([1.0, (x + 1.0)/2.0]))]))


# hard sigmoid function matrix wise
def hard_sigmoid(x, fun=hard_sig):
    return np.vectorize(fun)(x)


# hyperbolic tangent function matrix wise (works also element-wise)
def hyperbolic_tangent(x):
    return (np.exp(x) - np.exp(-x))/(np.exp(x) + np.exp(-x))


print(sigmoid(np.array([-100, 0, 100])))
print(hard_sigmoid(np.array([-100, 0, 0.1, 100])))
print(hyperbolic_tangent(np.array([-100, 0, 100])))

parameter_names = ['lstm_1_kernel_0.npy',
                   'lstm_1_recurrent_kernel_0.npy',
                   'lstm_1_bias_0.npy',
                   'lstm_2_kernel_0.npy',
                   'lstm_2_recurrent_kernel_0.npy',
                   'lstm_2_bias_0.npy',
                   'dense_1_kernel_0.npy',
                   'dense_1_bias_0.npy']


# LSTM 1 Weights
lstm_1_kernel_0 = np.load('lstm_1_kernel_0.npy')
print('lstm_1_kernel_0: ', lstm_1_kernel_0.shape)
lstm_1_recurrent_kernel_0 = np.load('lstm_1_recurrent_kernel_0.npy')
print('lstm_1_recurrent_kernel_0: ', lstm_1_recurrent_kernel_0.shape)
lstm_1_bias_0 = np.load('lstm_1_bias_0.npy')
print('lstm_1_bias_0: ', lstm_1_bias_0.shape)

# LSTM 2 Wights
lstm_2_kernel_0 = np.load('lstm_2_kernel_0.npy')
print('lstm_2_kernel_0: ', lstm_2_kernel_0.shape)
lstm_2_recurrent_kernel_0 = np.load('lstm_2_recurrent_kernel_0.npy')
print('lstm_2_recurrent_kernel_0: ', lstm_2_recurrent_kernel_0.shape)
lstm_2_bias_0 = np.load('lstm_2_bias_0.npy')
print('lstm_2_bias_0: ', lstm_2_bias_0.shape)

# Dense layer
dense_1_kernel_0 = np.load('dense_1_kernel_0.npy')
print('dense_1_kernel_0: ', dense_1_kernel_0.shape)
dense_1_bias_0 = np.load('dense_1_bias_0.npy')
print('dense_1_bias_0: ', dense_1_bias_0.shape)

time_seq = [0, 1, 2]
"""
input_seq = np.array([[[0.725323664],
                       [0.7671179],
                       [0.805884672]]])
"""
input_seq = np.array([[[0.680666907],
                       [0.725323664],
                       [0.7671179]]])
print('input_seq: ', input_seq.shape)
for time in time_seq:
    print('input t', time, ':', input_seq[0, time, 0])

"""
# z0 = z[:, :self.units]
# z1 = z[:, self.units: 2 * self.units]
# z2 = z[:, 2 * self.units: 3 * self.units]
# z3 = z[:, 3 * self.units:]

# i = self.recurrent_activation(z0)
# f = self.recurrent_activation(z1)
# c = f * c_tm1 + i * self.activation(z2)
# o = self.recurrent_activation(z3)

# activation =' tanh'
# recurrent_activation = 'hard_sigmoid'
"""


# LSTM 1
x_1_lstm_1 = input_seq[0, 0, 0]
print('x_1: ', x_1_lstm_1)
x_2_lstm_1 = input_seq[0, 1, 0]
print('x_2: ', x_2_lstm_1)
x_3_lstm_1 = input_seq[0, 2, 0]
print('x_3: ', x_3_lstm_1)

c_0_lstm_1 = np.zeros((1, 3))
h_0_lstm_1 = np.zeros((1, 3))

z_1_lstm_1 = np.dot(x_1_lstm_1, lstm_1_kernel_0) + np.dot(h_0_lstm_1, lstm_1_recurrent_kernel_0) + lstm_1_bias_0
print(z_1_lstm_1.shape)
i_1_lstm_1 = sigmoid(z_1_lstm_1[:, 0:3])
f_1_lstm_1 = sigmoid(z_1_lstm_1[:, 3:6])
input_to_c_1_lstm_1 = z_1_lstm_1[:, 6:9]
o_1_lstm_1 = sigmoid(z_1_lstm_1[:, 9:12])
c_1_lstm_1 = np.multiply(f_1_lstm_1, c_0_lstm_1) + np.multiply(i_1_lstm_1, hyperbolic_tangent(input_to_c_1_lstm_1))
h_1_lstm_1 = np.multiply(o_1_lstm_1, hyperbolic_tangent(c_1_lstm_1))
print('h_1_lstm_1: ', h_1_lstm_1.shape, h_1_lstm_1)

z_2_lstm_1 = np.dot(x_2_lstm_1, lstm_1_kernel_0) + np.dot(h_1_lstm_1, lstm_1_recurrent_kernel_0) + lstm_1_bias_0
print(z_2_lstm_1.shape)
i_2_lstm_1 = sigmoid(z_2_lstm_1[:, 0:3])
f_2_lstm_1 = sigmoid(z_2_lstm_1[:, 3:6])
input_to_c_2_lstm_1 = z_2_lstm_1[:, 6:9]
o_2_lstm_1 = sigmoid(z_2_lstm_1[:, 9:12])
c_2_lstm_1 = np.multiply(f_2_lstm_1, c_1_lstm_1) + np.multiply(i_2_lstm_1, hyperbolic_tangent(input_to_c_2_lstm_1))
h_2_lstm_1 = np.multiply(o_2_lstm_1, hyperbolic_tangent(c_2_lstm_1))
print('h_2_lstm_1: ', h_2_lstm_1.shape, h_2_lstm_1)

z_3_lstm_1 = np.dot(x_3_lstm_1, lstm_1_kernel_0) + np.dot(h_2_lstm_1, lstm_1_recurrent_kernel_0) + lstm_1_bias_0
print(z_3_lstm_1.shape)
i_3_lstm_1 = sigmoid(z_3_lstm_1[:, 0:3])
f_3_lstm_1 = sigmoid(z_3_lstm_1[:, 3:6])
input_to_c_3_lstm_1 = z_3_lstm_1[:, 6:9]
o_3_lstm_1 = sigmoid(z_3_lstm_1[:, 9:12])
c_3_lstm_1 = np.multiply(f_3_lstm_1, c_2_lstm_1) + np.multiply(i_3_lstm_1, hyperbolic_tangent(input_to_c_3_lstm_1))
h_3_lstm_1 = np.multiply(o_3_lstm_1, hyperbolic_tangent(c_3_lstm_1))
print('h_3_lstm_1: ', h_3_lstm_1.shape, h_3_lstm_1)

# LSTM 2
x_1_lstm_2 = h_1_lstm_1
x_2_lstm_2 = h_2_lstm_1
x_3_lstm_2 = h_3_lstm_1

c_0_lstm_2 = np.zeros((1, 1))
h_0_lstm_2 = np.zeros((1, 1))

z_1_lstm_2 = np.dot(x_1_lstm_2, lstm_2_kernel_0) + np.dot(h_0_lstm_2, lstm_2_recurrent_kernel_0) + lstm_2_bias_0
print(z_1_lstm_2.shape)
i_1_lstm_2 = sigmoid(z_1_lstm_2[:, 0])
f_1_lstm_2 = sigmoid(z_1_lstm_2[:, 1])
input_to_c_1_lstm_2 = z_1_lstm_2[:, 2]
o_1_lstm_2 = sigmoid(z_1_lstm_2[:, 3])
c_1_lstm_2 = np.multiply(f_1_lstm_2, c_0_lstm_2) + np.multiply(i_1_lstm_2, hyperbolic_tangent(input_to_c_1_lstm_2))
h_1_lstm_2 = np.multiply(o_1_lstm_2, hyperbolic_tangent(c_1_lstm_2))
print('h_1_lstm_2: ', h_1_lstm_2.shape, h_1_lstm_2)

z_2_lstm_2 = np.dot(x_2_lstm_2, lstm_2_kernel_0) + np.dot(h_1_lstm_2, lstm_2_recurrent_kernel_0) + lstm_2_bias_0
print(z_2_lstm_2.shape)
i_2_lstm_2 = sigmoid(z_2_lstm_2[:, 0])
f_2_lstm_2 = sigmoid(z_2_lstm_2[:, 1])
input_to_c_2_lstm_2 = z_2_lstm_2[:, 2]
o_2_lstm_2 = sigmoid(z_2_lstm_2[:, 3])
c_2_lstm_2 = np.multiply(f_2_lstm_2, c_1_lstm_2) + np.multiply(i_2_lstm_2, hyperbolic_tangent(input_to_c_2_lstm_2))
h_2_lstm_2 = np.multiply(o_2_lstm_2, hyperbolic_tangent(c_2_lstm_2))
print('h_2_lstm_2: ', h_2_lstm_2.shape, h_2_lstm_2)

z_3_lstm_2 = np.dot(x_3_lstm_2, lstm_2_kernel_0) + np.dot(h_2_lstm_2, lstm_2_recurrent_kernel_0) + lstm_2_bias_0
print(z_3_lstm_2.shape)
i_3_lstm_2 = sigmoid(z_3_lstm_2[:, 0])
f_3_lstm_2 = sigmoid(z_3_lstm_2[:, 1])
input_to_c_3_lstm_2 = z_3_lstm_2[:, 2]
o_3_lstm_2 = sigmoid(z_3_lstm_2[:, 3])
c_3_lstm_2 = np.multiply(f_3_lstm_2, c_2_lstm_2) + np.multiply(i_3_lstm_2, hyperbolic_tangent(input_to_c_3_lstm_2))
h_3_lstm_2 = np.multiply(o_3_lstm_2, hyperbolic_tangent(c_3_lstm_2))
print('h_3_lstm_2: ', h_3_lstm_2.shape, h_3_lstm_2)

output = np.dot(h_3_lstm_2, dense_1_kernel_0) + dense_1_bias_0
print('output: ', output)

权重已在列车时保存到文件中,可以从以下位置检索:

LSTM weights

为了创建适合sinwave信号的LSTM,我在Keras中使用了以下代码:

def build_simple_model(layers):
    model = Sequential()

    model.add(LSTM(input_shape=(layers[1], layers[0]),
                   output_dim=layers[1],
                   return_sequences=True,
                   activation='tanh',
                   recurrent_activation='sigmoid')) # 'hard_sigmoid'
    # model.add(Dropout(0.2))
    model.add(LSTM(layers[2],
                   return_sequences=False,
                   activation='tanh',
                   recurrent_activation='sigmoid')) # 'hard_sigmoid'

    # model.add(Dropout(0.2))
    model.add(Dense(output_dim=layers[3]))
    model.add(Activation("linear"))

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    plot_model(model, to_file='lstm_model.png', show_shapes=True, show_layer_names=True)
    print(model.summary())
    return model

这产生了以下模型:

LSTM Network

我使用了以下培训程序:

    seq_len = 3        
    model = lstm.build_simple_model([1, seq_len, 1, 1])

    model.fit(X_train,
              y_train,
              batch_size=512,
              nb_epoch=epochs,
              validation_split=0.05)

是否有可能理解为什么我的前向传递在预测未来的sin()信号值时不会产生所需的输出,这是基于前三个连续的信号值。

我尝试以前向传球练习为基础的原始示例来自here。以.npy格式上传的权重来自能够完美预测系列中下一个sin()值的网络。

1 个答案:

答案 0 :(得分:1)

我意识到问题所在。我试图使用Tensorflow会话(模型拟合后)而不是直接通过Keras方法提取模型权重。这导致权重矩阵完全有意义(尺寸明智)但包含初始化步骤中的值。

model.fit(X_train,
          y_train,
          batch_size=batch_size,
          nb_epoch=epochs,
          validation_split=0.05,
          callbacks=callbacks_list)

print('n_parameters: ', len(model.weights))
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

parameter_names = ['lstm_1_kernel_0',
                   'lstm_1_recurrent_kernel_0',
                   'lstm_1_bias_0',
                   'lstm_2_kernel_0',
                   'lstm_2_recurrent_kernel_0',
                   'lstm_2_bias_0',
                   'dense_1_kernel_0',
                   'dense_1_bias_0']

weights = model.get_weights()
trainable_weights = model.trainable_weights
for parameter in range(len(model.weights)):
    print('')
    # using Keras methods is the correct way
    print('parameter: ', trainable_weights[parameter])
    print('parameter Keras: ', weights[parameter])
    # using session with TF is the wrong way
    print('parameter TF: ', model.weights[parameter].eval(session=sess))
    #np.save(parameter_names[parameter], model.weights[parameter].eval(session=sess))
    #np.save(parameter_names[parameter], weights[parameter])

这会将以下内容打印到屏幕:

parameter:  <tf.Variable 'lstm_1/kernel:0' shape=(1, 12) dtype=float32_ref>
parameter Keras:  [[ 0.02005039  0.59627813 -0.77670902 -0.17643917  0.64905447 -0.49418128
   0.01204901  0.79791737 -1.58887422 -0.3566488   0.67758918  0.77245694]]
parameter TF:  [[-0.20346385 -0.07166874 -0.58842945  0.03744811  0.46911311 -0.0469712
  -0.07291448  0.27316415 -0.53298378  0.08367682  0.10194337  0.20933461]]

parameter:  <tf.Variable 'lstm_1/recurrent_kernel:0' shape=(3, 12) dtype=float32_ref>
parameter Keras:  [[ 0.01916649 -0.30881727 -0.07018201  0.28770521 -0.45713434 -0.33738521
   0.53091544 -0.78456688  0.50647908  0.12326431 -0.18517831 -0.28752103]
 [ 0.44490865 -0.09020164  1.00983524  0.43070397 -0.14646551 -0.53908533
   1.33833826  0.76106179 -1.28808987  0.71029669 -0.19338571 -0.30499896]
 [ 0.76727188 -0.10291406  0.53285897  0.31021088  0.46876401  0.04961515
   0.0573149   1.17765784 -0.45716232  0.26181531  0.60458028 -0.6042906 ]]
parameter TF:  [[-0.044281   -0.42013288 -0.06702472  0.16710882  0.07229936  0.20263752
   0.01935999 -0.65925431  0.21676332  0.02481769  0.50321299 -0.08369029]
 [-0.17725646 -0.14031938 -0.07758044 -0.39292315  0.36675838 -0.20198873
   0.59491426 -0.12469263  0.14705807  0.39603388 -0.25511321 -0.01221756]
 [ 0.51603764  0.34401873  0.36002275  0.05344227 -0.00293417 -0.36086732
   0.1636388  -0.24916036  0.09064917 -0.04246153  0.05563453 -0.5006755 ]]

parameter:  <tf.Variable 'lstm_1/bias:0' shape=(12,) dtype=float32_ref>
parameter Keras:  [  3.91339064e-01  -2.09703773e-01  -4.88098420e-04   1.15376031e+00
   6.24452651e-01   2.24053934e-01   4.06851530e-01   4.78419960e-01
   1.77846551e-01   3.19107175e-01   5.16630232e-01  -2.22970009e-01]
parameter TF:  [ 0.  0.  0.  1.  1.  1.  0.  0.  0.  0.  0.  0.]

parameter:  <tf.Variable 'lstm_2/kernel:0' shape=(3, 4) dtype=float32_ref>
parameter Keras:  [[ 2.01334882  1.9168334   1.77633524 -0.90856379]
 [ 1.17618477  1.02978265 -0.06435115  0.66180402]
 [-1.33014703 -0.71629387 -0.87376142  1.35648465]]
parameter TF:  [[ 0.83115911  0.72150767  0.51600969 -0.52725452]
 [ 0.53043616  0.59162521 -0.59219611  0.0951736 ]
 [-0.8030411  -0.00424314 -0.06715947  0.67533839]]

parameter:  <tf.Variable 'lstm_2/recurrent_kernel:0' shape=(1, 4) dtype=float32_ref>
parameter Keras:  [[-0.09348518 -0.7667768   0.24031806 -0.39155772]]
parameter TF:  [[-0.085137   -0.59010917  0.61000961 -0.52193022]]

parameter:  <tf.Variable 'lstm_2/bias:0' shape=(4,) dtype=float32_ref>
parameter Keras:  [ 1.21466994  2.22224903  1.34946632  0.19186479]
parameter TF:  [ 0.  1.  0.  0.]

parameter:  <tf.Variable 'dense_1/kernel:0' shape=(1, 1) dtype=float32_ref>
parameter Keras:  [[ 2.69569159]]
parameter TF:  [[ 1.5422312]]

parameter:  <tf.Variable 'dense_1/bias:0' shape=(1,) dtype=float32_ref>
parameter Keras:  [ 0.20767514]
parameter TF:  [ 0.]

正向密码因此是正确的。权重是错误的。正确的权重.npy文件也已在问题中提到的链接中更新。此正向传递可用于通过循环输出来说明使用LSTM生成序列。