如何从tensorflow中的csv文件中读取数据?

时间:2017-12-06 03:02:19

标签: csv tensorflow

我想在张量流中读取csv文件中的数据。因此,我一直在尝试使用不同的方式读取具有2000行的CSV文件,每行有93个功能,我希望得到一个热门的值。

我的数据集是这样的: enter image description here

第一列是93个特征的数据,第二列是16个一热的标签。 这是我的代码

import tensorflow as tf




# data_input = pd.read_csv('ans_string.csv')
# data_train = pd.read_csv('ans_result.csv')

x = tf.placeholder(tf.float32,[None,93])
W = tf.Variable(tf.zeros([93,16]))
b = tf.Variable(tf.zeros([16]))


sess = tf.InteractiveSession()

filename_queue = tf.train.string_input_producer(["dataset.csv"])

reader = tf.TextLineReader()

key,value = reader.read(filename_queue)

# _,csv_row = reader.read(filename_queue)
# data = tf.decode_csv(csv_row,record_fefaults = rDeraults)

record_defaults_key = [[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1]]
record_defaults_value = [[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1]]

list_result_key = tf.decode_csv(key,record_defaults = record_defaults_key)
list_result_value = tf.decode_csv(value,record_defaults = record_defaults_value)

features = tf.stack(list_result_key)
labels = tf.stack(list_result_value)


y = tf.nn.softmax(tf.matmul(x,W)+b)
y_ = tf.placeholder(tf.float32,[None,16])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

with tf.Session() as sess:
    
    # something happened
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord = coord)

    tf.global_variables_initializer().run()

    for _ in range (1000): 
        example,label = sess.run([features,labels])
        print(sess.run(example,label))
        sess.run(train_step,feed_dict={x:example,y_:label})
   
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))  
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    print(sess.run(accuracy.eval({x:example,y_:label})))
    
    coord.request_stop()
    coord.join(threads)

我想训练我的模型,但是我得到了这样的错误。 enter image description here

我该如何解决?

0 个答案:

没有答案