如何在tensorflow中读取CSV文件以手动替换training_x和training_y中的数据,我的Python代码是:
import tensorflow as tf
from tensorflow import keras
import os
import pandas
model = keras.Sequential()
input_layer = keras.layers.Dense(3, input_shape=[3], activation='tanh')
model.add(input_layer)
output_layer = keras.layers.Dense(1, activation='sigmoid')
model.add(output_layer)
gd = tf.train.GradientDescentOptimizer(0.01)
model.compile(optimizer=gd, loss='mse')
dir_path = os.path.dirname(os.path.realpath(__file__))
filename = dir_path + "dados.csv"
......
training_x = tf.Variable([[1, 1, 0], [1, 1, 1], [0, 1, 0], [-1, 1, 0], [-1, 0, 0], [-1, 0, 1],[0, 0, 1], [1, 1, 0], [1, 0, 0], [-1, 0, 0], [1, 0, 1], [0, 1, 1], [0, 0, 0], [-1, 1, 1]])
training_y = tf.Variable([[0], [0], [1], [1], [1], [0], [1],[0], [1], [1], [1], [1], [1], [0]])
CSV文件:
outlook,humidity,wind,play
1,1,0,0
答案 0 :(得分:0)
我找到了解决方法
file = ("dados.csv")
def data_encode(file):
X = []
Y = []
train_file = open(file, 'r')
for line in train_file.read().strip().split('\n'):
line = line.split(',')
X.append([int(line[0]), int(line[1]), int(line[2])])
Y.append(int(line[3]))
return X, Y
train_X , train_Y = data_encode(file)