如何将多项式变换应用于scikitlearn中的特征子集

时间:2017-12-05 22:58:33

标签: python scikit-learn

Scikitlearn的PolynomialFeatures有助于多项式特征生成。

这是一个简单的例子:

import numpy as np
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures

# Example data:
X = np.arange(6).reshape(3, 2)


# Works fine
poly = PolynomialFeatures(2)
pd.DataFrame(poly.fit_transform(X))

   0  1  2   3   4   5
0  1  0  1   0   0   1
1  1  2  3   4   6   9
2  1  4  5  16  20  25

问题:是否有能力仅将多项式变换应用于指定的要素列表?

e.g。

# Use previous dataframe
X2 = X.copy()

# Categorical feature will be handled 
# by a one hot encoder in another feature generation step
X2['animal'] = ['dog', 'dog', 'cat']

# Don't try to poly transform the animal column
poly2 = PolynomialFeatures(2, cols=[1,2]) # <-- ("cols" not an actual param)

# desired outcome:
pd.DataFrame(poly2.fit_transform(X))
   0  1  2   3   4   5   'animal'
0  1  0  1   0   0   1   'dog'
1  1  2  3   4   6   9   'dog'
2  1  4  5  16  20  25   'cat'

当使用Pipeline功能组合一系列长的特征生成和模型训练代码时,这将特别有用。

一种选择是使用自己的变压器(Michelle Fullwood的great example),但我认为其他人之前会偶然发现这个用例。

4 个答案:

答案 0 :(得分:6)

与sklearn中的许多其他变换器一样,

PolynomialFeatures没有指定要应用哪些数据列的参数,因此将其放入管道并期望工作并不简单。

更通用的方法是,您可以使用FeatureUnion并使用其他管道为数据框中的每个功能指定转换器。

一个简单的例子可能是:

from sklearn.pipeline import FeatureUnion
from sklearn.preprocessing import PolynomialFeatures, OneHotEncoder, LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline


X = pd.DataFrame({'cat_var': ['a', 'b', 'c'], 'num_var': [1, 2, 3]})


class ColumnExtractor(object):
    def __init__(self, columns=None):
        self.columns = columns

    def fit(self, X, y=None):
        return self

    def transform(self, X):
        X_cols = X[self.columns]

    return X_cols


pipeline = Pipeline([
    ('features', FeatureUnion([
        ('num_var', Pipeline([
            ('extract', ColumnExtractor(columns=['num_var'])),
            ('poly', PolynomialFeatures(degree=2))
        ])),
        ('cat_var', Pipeline([
            ('extract', ColumnExtractor(columns=['cat_var'])),
            ('le', LabelEncoder()),
            ('ohe', OneHotEncoder()),
        ]))
    ])),
    ('estimator', LogisticRegression())
])

答案 1 :(得分:3)

是的,请查看sklearn-pandas

这应该有效(应该有一个更优雅的解决方案,但现在无法测试):

from sklearn.preprocessing import PolynomialFeatures
from sklearn_pandas import DataFrameMapper

X2.columns = ['col0', 'col1', 'col2', 'col3', 'col4', 'col5', 'animal']

mapper = DataFrameMapper([
('col0', PolynomialFeatures(2)),
('col1', PolynomialFeatures(2)),
('col2', PolynomialFeatures(2)),
('col3', PolynomialFeatures(2)),
('col4', PolynomialFeatures(2)),
('col5', PolynomialFeatures(2)),
('Animal', None)])

X3 = mapper.fit_transform(X2)

答案 2 :(得分:3)

回应彭君黄的回答 - 这种方法很棒但实施却有问题。 (这应该是一个评论,但它有点长。另外,没有足够的cookie。)

我尝试使用代码并遇到了一些问题。在愚弄了一下之后,我找到了原始问题的以下答案。 主要问题是ColumnExtractor需要从BaseEstimator和TransformerMixin继承,将其转换为可与其他sklearn工具一起使用的估算器。

我的示例数据显示了两个数值变量和一个分类变量。 我使用pd.get_dummies进行单热编码以保持管道的一点点 简单。此外,我遗漏了管道的最后一个阶段(估算器),因为我们没有y数据适合;重点是分别显示选择,处理和加入。

享受。

微米。

import pandas as pd
import numpy as np
from sklearn.pipeline import FeatureUnion
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin

X = pd.DataFrame({'cat': ['a', 'b', 'c'], 'n1': [1, 2, 3], 'n2':[5, 7, 9] })

   cat  n1  n2
0   a   1   5
1   b   2   7
2   c   3   9

# original version had class ColumnExtractor(object)
# estimators need to inherit from these classes to play nicely with others
class ColumnExtractor(BaseEstimator, TransformerMixin):
    def __init__(self, columns=None):
        self.columns = columns
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        X_cols = X[self.columns]
        return X_cols

# Using pandas get dummies to make pipeline a bit simpler by
# avoiding one-hot and label encoder.     
# Build the pipeline from a FeatureUnion that processes 
# numerical and one-hot encoded separately.
# FeatureUnion puts them back together when it's done.
pipe2nvars = Pipeline([
    ('features', FeatureUnion([('num', 
                                Pipeline([('extract', 
                                           ColumnExtractor(columns=['n1', 'n2'])),
                                          ('poly', 
                                           PolynomialFeatures())  ])),
                               ('cat_var', 
                                ColumnExtractor(columns=['cat_b','cat_c']))])
    )])    

# now show it working...
for p in range(1, 4):
    pipe2nvars.set_params(features__num__poly__degree=p)
    res = pipe2nvars.fit_transform(pd.get_dummies(X, drop_first=True))
    print('polynomial degree: {}; shape: {}'.format(p, res.shape))
    print(res)

polynomial degree: 1; shape: (3, 5)
[[1. 1. 5. 0. 0.]
 [1. 2. 7. 1. 0.]
 [1. 3. 9. 0. 1.]]
polynomial degree: 2; shape: (3, 8)
[[ 1.  1.  5.  1.  5. 25.  0.  0.]
 [ 1.  2.  7.  4. 14. 49.  1.  0.]
 [ 1.  3.  9.  9. 27. 81.  0.  1.]]
polynomial degree: 3; shape: (3, 12)
[[  1.   1.   5.   1.   5.  25.   1.   5.  25. 125.   0.   0.]
 [  1.   2.   7.   4.  14.  49.   8.  28.  98. 343.   1.   0.]
 [  1.   3.   9.   9.  27.  81.  27.  81. 243. 729.   0.   1.]]

答案 3 :(得分:0)

@plumbus_bouquet代码的改进:

from sklearn.preprocessing import PolynomialFeatures
from sklearn_pandas import DataFrameMapper

X2.columns = ['col0', 'col1', 'col2', 'animal']
degree = 2

mapper = DataFrameMapper(
(['col0', 'col1', 'col2'], PolynomialFeatures(degree))
)

X3 = mapper.fit_transform(X2)

另一种方法(我更喜欢)是使用sklearn.compose中的ColumnTransformer 。我发现它很容易在管道中使用。

要选择列,您有多种方法。一些方法是:

  1. 基于列名
  2. 基于数据类型(包括和排除选项)
  3. 索引位置
  4. 切片
  5. RegEx

请参见example here