我想使用dplyr
计算value
people
嵌套在pair
session
dat <- data.frame(person=c(rep(1, 10),
rep(2, 10),
rep(3, 10),
rep(4, 10),
rep(5, 10),
rep(6, 10),
rep(7, 10),
rep(8, 10)),
pair=c(rep(1, 20),
rep(2, 20),
rep(3, 20),
rep(4, 20)),
condition=c(rep("NEW", 10),
rep("OLD", 10),
rep("NEW", 10),
rep("OLD", 10),
rep("NEW", 10),
rep("OLD", 10),
rep("NEW", 10),
rep("OLD", 10)),
session=rep(seq(from=1, to=10, by=1), 8),
value=c(0, 2, 4, 8, 16, 16, 18, 20, 20, 20,
0, 1, 1, 2, 4, 5, 8, 12, 15, 15,
0, 2, 8, 10, 15, 16, 18, 20, 20, 20,
0, 4, 4, 6, 6, 8, 10, 12, 12, 18,
0, 6, 8, 10, 16, 16, 18, 20, 20, 20,
0, 2, 2, 3, 4, 8, 8, 8, 10, 12,
0, 10, 12, 16, 18, 18, 18, 20, 20, 20,
0, 2, 2, 8, 10, 10, 11, 12, 15, 20)
)
之间的差异。
person
例如,pair==1
1和2成对(person==1
):
session==2
&amp; person==2
:2 session==2
&amp; NEW
:1 差异(OLD
- 2-1=1
)是group_by()
。
这是我到目前为止所尝试的内容。我想我先summarise()
然后dat %>%
mutate(session = factor(session)) %>%
group_by(condition, pair, session) %>%
summarise(pairDiff = value-first(value))
,但我还没有破解这个坚果。
import re
import requests
from bs4 import BeautifulSoup
r = requests.get('https://letterboxd.com/film/donnie-darko/')
soup = BeautifulSoup(r.text, 'lxml')
cinematographer = soup(href=re.compile(r'/cinematography/'))[0].text
print cinematographer
# outputs "Stephen Poster"
期望的输出:
答案 0 :(得分:2)
您的输出可以通过以下方式获得:
dat %>% group_by(pair,session) %>% arrange(condition) %>% summarise(diff = -diff(value))
Source: local data frame [40 x 3]
Groups: pair [?]
# A tibble: 40 x 3
pair session diff
<dbl> <dbl> <dbl>
1 1 1 0
2 1 2 1
3 1 3 3
4 1 4 6
5 1 5 12
6 1 6 11
7 1 7 10
8 1 8 8
9 1 9 5
10 1 10 5
# ... with 30 more rows
arrange
确保NEW和OLD位于正确的位置,但解决方案确实取决于每个组合和会话组合恰好有2个值。
答案 1 :(得分:1)
您可以将condition
传播到标头,然后执行减法NEW - OLD
:
library(dplyr); library(tidyr)
dat %>%
select(-person) %>%
spread(condition, value) %>%
mutate(diff = NEW - OLD) %>%
select(session, pair, diff)
# A tibble: 40 x 3
# session pair diff
# <dbl> <dbl> <dbl>
# 1 1 1 0
# 2 2 1 1
# 3 3 1 3
# 4 4 1 6
# 5 5 1 12
# 6 6 1 11
# 7 7 1 10
# 8 8 1 8
# 9 9 1 5
#10 10 1 5
# ... with 30 more rows