使用下面的示例,我想通过CaseWorker对客户进行数据框分组,然后为每个客户端组确定是否在"任务"与" Task2"中的任务列表相同。
如果每个任务都在" Task2"我会很高兴,简单的真假,或者更好。但不是"任务"可以提取并显示在新列或数据框中。
所以基本上我需要确保"任务"和"任务2"包含每个客户的相同条目。
如果可能的话,我想坚持使用Dplyr和Stringr,或者至少留在Tidyverse内。我在想那里使用" group_by"和" str_detect"或者其他一些Stringr功能,以优雅的方式实现这一目标。
CaseWorker<-c("John","John","John","John","John","John","Melanie","Melanie","Melanie","Melanie","Melanie","Melanie")
Client<-c("Chris","Chris","Chris","Tom","Tom","Tom","Valerie","Valerie","Valerie","Tim","Tim","Tim")
Task<-c("Feed cat","Make dinner","Iron shirt","Make dinner","Do homework","Make lunch","Make dinner","Feed cat","Buy groceries","Do homework","Iron shirt","Make lunch")
Task2<-c("Feed cat","Make dinner","Iron shirt","Make dinner","Do homework","Feed cat","Make dinner","Feed cat","Iron shirt","Do homework","Iron shirt","Make lunch")
Df<-data.frame(CaseWorker,Client,Task,Task2)
答案 0 :(得分:2)
看看这是不是你想要的。
首先,查看Task
是否与Task2
匹配。如果不是,请将Task2
作为新变量返回。我将其存储到新数据框df2
df2 <- Df %>%
mutate(match = Task == Task2,
non_match = ifelse(!match, Task2, ""))
df2
# CaseWorker Client Task Task2 match non_match
# 1 John Chris Feed cat Feed cat TRUE
# 2 John Chris Make dinner Make dinner TRUE
# 3 John Chris Iron shirt Iron shirt TRUE
# 4 John Tom Make dinner Make dinner TRUE
# 5 John Tom Do homework Do homework TRUE
# 6 John Tom Make lunch Feed cat FALSE Feed cat
# 7 Melanie Valerie Make dinner Make dinner TRUE
# 8 Melanie Valerie Feed cat Feed cat TRUE
# 9 Melanie Valerie Buy groceries Iron shirt FALSE Iron shirt
# 10 Melanie Tim Do homework Do homework TRUE
# 11 Melanie Tim Iron shirt Iron shirt TRUE
# 12 Melanie Tim Make lunch Make lunch TRUE
然后summarise
结果,以查看单个CaseWorker
/ Client
对是否与所有条目匹配。
df2 %>%
group_by(CaseWorker, Client) %>%
summarise(n = n(),
matches = sum(match),
all_match = n == matches)
# CaseWorker Client n matches all_match
# <chr> <chr> <int> <int> <lgl>
# 1 John Chris 3 3 TRUE
# 2 John Tom 3 2 FALSE
# 3 Melanie Tim 3 3 TRUE
# 4 Melanie Valerie 3 2 FALSE
如果您需要原始数据集中的all_match
变量,您当然可以将其合并回数据框。
答案 1 :(得分:1)
您只需dplyr
并使用%in%
Df %>%
group_by(CaseWorker,Client) %>%
mutate(Check = Task %in% Task2)
这取决于确切的案例匹配,如果您担心以下情况:
Df %>%
group_by(CaseWorker,Client) %>%
rowwise() %>%
mutate(Check = grepl(Task, Task2, ignore.case = TRUE))
但你必须在mutate之前使用rowwise来解决grepl(或大多数R函数)的向量化性质
答案 2 :(得分:0)
如果您想使用stringr包。以下内容也可以为您服务。
Df %>%
group_by(CaseWorker,Client) %>%
mutate(Check=str_detect(as.character(Task),as.character(Task2))
答案 3 :(得分:0)
这可能只是我误解了这个问题,但我认为如果你想要的只是Task与Task2不匹配的记录,你可能会过度复杂化。
> Df[which(Df$Task != Df$Task2),]
=== ========== ======= ============= ==========
\ CaseWorker Client Task Task2
=== ========== ======= ============= ==========
6 John Tom Make lunch Feed cat
9 Melanie Valerie Buy groceries Iron shirt
=== ========== ======= ============= ==========