R中的蒙特卡罗模拟,自举和回归

时间:2017-12-03 04:02:42

标签: r simulation apply resampling replicate

我已经使用SAS很长一段时间了,现在我想在R中翻译我的代码。我需要帮助来做以下事情:

  1. 生成多个引导样本
  2. 对每个样本运行线性回归模型
  3. 通过复制样本将参数存储在新数据集中
  4. 为了更清晰,我编辑了这段代码。 我使用了很多for循环,我知道并不总是推荐。这个过程很慢

    是否有代码/包(例如应用系列函数,“插入符号”包)可以使这个非常干净有效/快速,特别是当样本大小* bootsample> 1000万

    非常感谢任何帮助。

    samplesize <- 200
    bootsize<- 500
    myseed <- 123
    
    #generating a fake dataset
           id=1:n
           set.seed(myseed)
           x <-  rnorm(samplesize, 5, 5)
           y <-  rnorm(samplesize, 2 + 0.4*x, 0.5)
          data <- data.frame(id, x, y)
    
    head(data)
      id         x        y
    1  1  2.197622 3.978454
    2  2  3.849113 4.195852
    3  3 12.793542 6.984844
    4  4  5.352542 4.412614
    5  5  5.646439 4.051405
    6  6 13.575325 7.192007
    
    # generate bootstrap samples
    
    bootstrap <- function(nbootsamples, data, seed) {
       bootdata <-  data.frame() #to initialize it
       set.seed(seed) 
       for (i in 1:nbootsamples) {
         replicate <- i
         bootstrapIndex <- sample(1:nrow(data), replace = TRUE)
         datatemp <- data[bootstrapIndex, ]
         tempall <- cbind(replicate, datatemp)
         bootdata <- rbind(bootdata, tempall)
       }
       return(bootdata)
     }
     bootdata <- bootstrap(nbootsamples=bootsize, data=data, seed=myseed)
     bootdata <- dplyr::arrange(bootdata, replicate, id)
     head(bootdata)
     #The data should look like this
      replicate id         x        y
    1         1  1  2.197622 3.978454
    2         1  3 12.793542 6.984844
    3         1  5  5.646439 4.051405
    4         1  9  1.565736 3.451748
    5         1 10  2.771690 3.081662
    6         1 10  2.771690 3.081662
    
    #Model-fitting and saving coefficient and means
    
    modelFitting <- function(y, x, data) {
       modeltemp <-  glm(y ~ x,
         data = data,
         family = gaussian('identity'))
       Inty <-  coef(modeltemp)["(Intercept)"]
       betaX <-  coef(modeltemp)["x"]
       sdy <-  sd(residuals.glm(modeltemp))
       data.frame(Inty, betaX, sdy, row.names = NULL)
     }
    
    saveParameters <- function(nbootsamples, data, seed) {
       parameters <-  data.frame() #to initialize it
       for (i in 1:length(unique(data$replicate))) {
         replicate <- i
         datai <- data[ which(data$replicate==i),]
         datatemp <- modelFitting(y, x,data=datai)
         meandata <- data.frame(Pr_X=mean(datai$x))
         tempall <- cbind(replicate, datatemp, meandata)
         parameters <- rbind(parameters, tempall)
       }
       return(parameters)
     }
    parameters <- saveParameters(nbootsamples=bootsize, data=bootdata, seed=myseed)
     head(parameters)
    
    #Ultimately all I want is my final dataset to look like the following
    
      replicate     Inty     betaX       sdy     Pr_X
    1         1 2.135529 0.3851757 0.5162728 4.995836
    2         2 1.957152 0.4094682 0.5071635 4.835884
    3         3 2.044257 0.3989742 0.4734178 5.111185
    4         4 2.093452 0.3861861 0.4921470 4.741299
    5         5 2.017825 0.4037699 0.5240363 4.931793
    6         6 2.026952 0.3979731 0.4898346 5.502320
    

1 个答案:

答案 0 :(得分:2)

使用caret包可以轻松完成重采样回归。给出您的示例数据,通过广义线性模型运行200个引导程序样本的代码如下所示。

library(caret)
x = round(rnorm(200, 5, 5))
y= rnorm(200, 2 + 0.4*x, 0.5)
theData <- data.frame(id=1:200,x, y)
# configure caret training parameters to 200 bootstrap samples
fitControl <- trainControl(method = "boot",
                           number = 200)
fit <- train(y ~ x, method="glm",data=theData,
             trControl = fitControl)
# print output object
fit
# print first 10 resamples 
fit$resample[1:10,]

来自插入符号的输出如下所示:

> fit
Generalized Linear Model 

200 samples
  1 predictor

No pre-processing
Resampling: Bootstrapped (200 reps) 
Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
Resampling results:

  RMSE       Rsquared   MAE      
  0.4739306  0.9438834  0.3772199

> fit$resample[1:10,]
        RMSE  Rsquared       MAE    Resample
1  0.5069606 0.9520896 0.3872257 Resample001
2  0.4636029 0.9460214 0.3711900 Resample002
3  0.4446103 0.9549866 0.3435148 Resample003
4  0.4464119 0.9443726 0.3636947 Resample004
5  0.5193685 0.9191259 0.4010104 Resample005
6  0.4995917 0.9451417 0.4044659 Resample006
7  0.4347831 0.9494606 0.3383224 Resample007
8  0.4725041 0.9483434 0.3716319 Resample008
9  0.5295650 0.9458453 0.4241543 Resample009
10 0.4796985 0.9514595 0.3927207 Resample010
> 

caret GitHub site提供了有关如何使用插入符号的详细信息,包括生成的模型对象的内容(例如,访问各个模型,以便您可以使用predict()函数生成用于模拟的预测)。

Caret还支持并行处理。有关如何使用插入符号并行处理的示例,请阅读Improving Performance of Random Forest with caret::train()

此外,R中通过R中的Monte Carlo包支持蒙特卡罗模拟。