我正在尝试在python中实现卷积神经网络。架构如下:
INPUT->[Convolution->Sigmoid->Pooling]->[Convolution->Sigmoid->Pooling]->Fully Connected Layer-> Hidden Layer->Ouput
。
输入形状:28 * 28
COnvolutional layer1的过滤器/重量形状:20 * 1 * 5 * 5
COnvolutional layer2的过滤器/重量形状:40 * 20 * 5 * 5
激活功能:Sigmoid(1 /(1 + e ^ -x))
由于滤波器/砝码的形状较大,在应用COnvolutional Layer 2中的点积时,得到的输出值接近20或更高,这随后导致sigmoid激活函数值为1之后的输出。
COnvolutional layer1的输出:
[ 0.75810452 0.79819809 0.70897314 0.50897858 0.02901152 0.98447587
0.99995668 0.99999814 0.99912627 0.7885211 0.87708188 0.76611807]
...
...
COnvolutional layer2的输出:
[ 19.88641441 20.11005634 20.04984707 20.19106394 19.93096274
20.1585536 19.84757161 19.79030395]
...
...
在convlayer2上应用sigmoid后输出:
[ 1. 1. 1. 1. 1. 1. 1. 1.]
...
...
[ 1. 1. 1. 0.99999 1. 1. 1. 1.]
我在这个论坛上发现了类似的问题:Neural Network sigmoid function。我没有犯下蒂姆答案中指出的错误。 但我无法弄清楚的是:
最后,即使有这些变化,具有所有正权重的完全连接的神经网络仍可能产生输出的全1。您可以包含对应于抑制节点的负权重,或者显着降低连通性(例如,层n中的节点连接到层n + 1中的节点的概率为0.1)。
我应该在convlayer2上应用sigmoid后对输出进行标准化吗?还是尝试别的什么?
编辑: 输入数据:
[[ 3. 0. 0. 3. 7. 3. 0. 3. 0. 11. 0. 0.
3. 0. 0. 3. 8. 0. 0. 3. 0. 0. 0. 2.
0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 1. 5. 0. 12. 0.
16. 0. 0. 4. 0. 2. 8. 3. 0. 4. 8. 0.
0. 0. 0. 0.]
[ 0. 0. 2. 0. 0. 0. 1. 2. 1. 12. 0. 8.
0. 0. 6. 0. 11. 0. 0. 6. 7. 2. 0. 0.
0. 0. 0. 0.]
[ 0. 1. 3. 0. 0. 2. 3. 0. 0. 0. 12. 0.
0. 23. 0. 0. 0. 0. 11. 3. 0. 0. 4. 0.
0. 0. 0. 0.]
[ 0. 1. 1. 0. 0. 2. 0. 0. 6. 0. 25. 27.
136. 135. 188. 89. 84. 25. 0. 0. 3. 1. 0. 0.
0. 0. 0. 0.]
[ 4. 0. 0. 0. 0. 0. 0. 0. 3. 88. 247. 236.
255. 249. 250. 227. 240. 136. 37. 1. 0. 2. 2. 0.
0. 0. 0. 0.]
[ 2. 0. 0. 3. 0. 0. 4. 27. 193. 251. 253. 255.
255. 255. 255. 240. 254. 255. 213. 89. 0. 0. 14. 1.
0. 0. 0. 0.]
[ 0. 0. 0. 6. 0. 0. 18. 56. 246. 255. 253. 243.
251. 255. 245. 255. 255. 254. 255. 231. 119. 7. 0. 5.
0. 0. 0. 0.]
[ 4. 0. 0. 12. 13. 0. 65. 190. 246. 255. 255. 251.
255. 109. 88. 199. 255. 247. 250. 255. 234. 92. 0. 0.
0. 0. 0. 0.]
[ 0. 10. 1. 0. 0. 18. 163. 248. 255. 235. 216. 150.
128. 45. 6. 8. 22. 212. 255. 255. 252. 172. 0. 15.
0. 0. 0. 0.]
[ 0. 1. 4. 5. 0. 0. 187. 255. 254. 94. 57. 7.
1. 0. 6. 0. 0. 139. 242. 255. 255. 218. 62. 0.
0. 0. 0. 0.]
[ 5. 2. 0. 0. 11. 56. 252. 235. 253. 20. 5. 2.
5. 1. 0. 1. 2. 0. 97. 249. 248. 249. 166. 8.
0. 0. 0. 0.]
[ 0. 0. 2. 0. 0. 70. 255. 255. 245. 25. 10. 0.
0. 1. 0. 4. 10. 0. 10. 255. 246. 250. 155. 0.
0. 0. 0. 0.]
[ 2. 0. 7. 12. 0. 87. 226. 255. 184. 0. 3. 0.
10. 5. 0. 0. 0. 9. 0. 183. 251. 255. 222. 15.
0. 0. 0. 0.]
[ 0. 5. 1. 0. 19. 230. 255. 243. 255. 35. 2. 0.
0. 0. 0. 9. 8. 0. 0. 70. 245. 242. 255. 14.
0. 0. 0. 0.]
[ 0. 4. 3. 0. 19. 251. 239. 255. 247. 30. 1. 0.
4. 4. 14. 0. 0. 2. 0. 47. 255. 255. 247. 21.
0. 0. 0. 0.]
[ 6. 0. 2. 2. 0. 173. 247. 252. 250. 28. 10. 0.
0. 8. 0. 0. 0. 8. 0. 67. 249. 255. 255. 12.
0. 0. 0. 0.]
[ 0. 0. 6. 3. 0. 88. 255. 251. 255. 188. 21. 0.
15. 0. 8. 2. 16. 0. 35. 200. 247. 251. 134. 4.
0. 0. 0. 0.]
[ 0. 3. 3. 1. 0. 11. 211. 247. 249. 255. 189. 76.
0. 0. 4. 0. 2. 0. 169. 255. 255. 247. 47. 0.
0. 0. 0. 0.]
[ 0. 6. 0. 0. 2. 0. 59. 205. 255. 240. 255. 182.
41. 56. 28. 33. 42. 239. 246. 251. 238. 157. 0. 1.
0. 0. 0. 0.]
[ 2. 1. 0. 0. 2. 10. 0. 104. 239. 255. 240. 255.
253. 247. 237. 255. 255. 250. 255. 239. 255. 100. 0. 1.
0. 0. 0. 0.]
[ 1. 0. 3. 0. 0. 7. 0. 4. 114. 255. 255. 255.
255. 247. 249. 253. 251. 254. 237. 251. 89. 0. 0. 1.
0. 0. 0. 0.]
[ 0. 0. 9. 0. 0. 1. 13. 0. 14. 167. 255. 246.
253. 255. 255. 254. 242. 255. 244. 61. 0. 19. 0. 1.
0. 0. 0. 0.]
[ 2. 1. 7. 0. 0. 4. 0. 14. 0. 27. 61. 143.
255. 255. 252. 255. 149. 21. 6. 16. 0. 0. 7. 0.
0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.]]
convlayer 1的权重:
[[[-0.01216923 -0.00584966 0.04876327 0.04628595 0.05644253]
[-0.03813031 -0.0304277 0.05728934 -0.01358741 -0.02875361]
[ 0.04929296 0.05958448 0.05497736 0.04699187 -0.04964543]
[ 0.01874465 0.05793848 0.03988833 -0.02355133 -0.05672331]
[ 0.03986748 -0.06098319 0.01299825 -0.00239702 -0.01750711]]]
[[[-0.02474246 0.0423619 -0.02130952 0.00718671 0.02677802]
[ 0.04151089 0.04336411 -0.03549197 -0.01935773 0.04035303]
[ 0.01466489 -0.01117737 0.0081063 0.01310948 0.01900553]
[-0.01723775 0.0148552 -0.03563556 -0.04108806 0.01764391]
[ 0.03932499 -0.00911049 0.00443425 -0.0388128 0.01646769]]
...........
...........
控制者2的权重:
[[-0.02894977 -0.00163836 0.0416469 -0.00195158 0.03194728]
[ 0.02618844 -0.00961595 -0.03348994 0.04460359 0.03113144]
[ 0.04166139 -0.02487885 0.02173471 -0.00147136 0.00803713]
[ 0.02262536 -0.03310476 -0.00949261 -0.0450313 0.03128755]
[-0.01181284 0.00558957 -0.02410718 0.01706195 0.01151338]]
[[ 0.04118888 -0.01306432 -0.01013332 0.03423443 0.03135569]
[ 0.00471491 0.02169717 0.00583819 -0.02421325 -0.01708062]
[-0.01244262 -0.00934037 0.00605259 -0.03825137 -0.00606101]
[-0.01699741 0.01311037 0.0307442 0.04153474 -0.00470464]
[-0.02592571 -0.01203504 0.04052782 0.03150989 0.02740532]]
.........
.........
使用Xavier初始化初始化权重:
n_in=28*28
n_out = 24*24
w_bound = numpy.sqrt(6./float(n_in+n_out))
filters = numpy.random.uniform(-w_bound,w_bound,(40,20, 5,5))
答案 0 :(得分:0)
1-您是否规范了0到1之间的输出?如果你没有,那么每个大于1的输出都会变为1。
2-标准化输入数据,将其除以255,这是最大的RGB值。
3-肯定存在一个问题:COnvolutional layer2的输出:
[19.88641441 20.11005634 20.04984707 20.19106394 19.93096274 20.1585536 19.84757161 19.79030395]
这些数字是不可能的,你如何初始化你的轮盘?它们应该在0和1之间初始化。
此外,您应该将Convs标准化。要做到这一点,并且我假设您为了教育目的而执行此实现,请将sigmoid应用于所有转换的输出,这样您的转换值就不会上升。通常情况下,RELU激活可以使用卷积层获得更好的结果,但是使用sigmoid也可以获得良好的结果。