错误是指第45行(prediction = my_classifier.predict(features_test));
。但是,然后错误继续进行属性错误,然后引用第41行(my_classifier = ScrappyKNN())
。它声明对象没有属性'predict':
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from scipy.spatial import distance
def euc(a,b):
return distance.euclidean(a,b)
class ScrappyKNN():
def fit(self, features_train, labels_train):
self.features_train = features_train
self.labels_train = labels_train
def predict(self, features_test):
predictions = []
for item in features_test:
label = self.closest(item)
predictions.append(label)
return predictions
def closest(self, item):
best_dist = euc(item, self.features_train[0])
best_index = 0
for i in range(1, len(self.features_train)):
dist = euc(item, self.features_train[i])
if dist < best_dist:
best_dist = distance
best_index = i
return self.labels_train[best_index]
iris = datasets.load_iris()
features = iris.data
labels = iris.target
features_train, features_test, labels_train, labels_test = train_test_split(features, labels, test_size=.5)
my_classifier = ScrappyKNN()
# my_classifier = KNeighborsClassifier()
my_classifier.fit(features_train, labels_train)
prediction = my_classifier.predict(features_test)
print(accuracy_score(labels_test, prediction))
iris1 = [[7.1, 2.9, 5.3, 2.4]]
iris_prediction = my_classifier.predict(iris1)
# Conditional Code
if iris_prediction[0] == 0:
print("Setosa")
if iris_prediction[0] == 1:
print("Versicolor")
if iris_prediction[0] == 2:
print("Virginica")
答案 0 :(得分:0)
我在课堂上做了类似的事情。我有虹膜数据的K最近邻居的答案键。也许这可以为你提供更好的指导。如果滚动到E部分,您将看到KNN。 https://github.com/wendysegura/DS-SF-27/blob/master/classes/08/code/codealong-08-k-nearest-neighbors-answer-key.ipynb
答案 1 :(得分:0)
弄清楚它是什么......除了间距问题(谢谢Gary!),我输入的是best_dist = dist,而不是输入best_dist = dist。非常感谢您的投入!!亲爱的Gwenevere,您提供的信息,我将在下一个项目中使用,谢谢!