我将画布图像的像素矩阵转换为二进制矩阵(0 =黑色,1 =其他颜色)。那个矩阵显示如下:
var matrix = [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 1, 1, 1, 0, 0, 0],
[1, 1, 0, 1, 0, 0, 0, 1, 0, 0],
[1, 0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 1, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 1, 1, 1],
[0, 1, 0, 1, 1, 0, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
];
如果你看一下,1s就是图像的元素。 如何分隔该矩阵的元素?我必须检查每个位置,每当我找到1时,如果我还有其他1个(上,下,左,右或对角线) 并将它们保存在不同的数组中
for(var y = 0; y < contFilas; y++) {
for(var x = 0; x < contColumnas; x++) {
if (matrix[y][x]== 1) {
//check if there are more 1 around
}
}
}
我期望的结果类似于:
ElementArray1 = [...] // elements of a region with positions
ElementArray2 = [...]
ElementArray3 = [...]
//as many arrays as there are elements
For example, the ElementArray1 contains:
[(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)] //first figure of 1s
答案 0 :(得分:1)
首先,使用数组编写一个真正的javascript矩阵。在你的循环中,计算surrounders并注意不要超过你的界限。快速示例代码段:
编辑:添加了您编辑后设置的像素集
编辑:更改为查找连接像素的区域
编辑:添加区域联合
var matrix = [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 1, 1, 1, 0, 0, 0],
[1, 1, 0, 1, 0, 0, 0, 1, 0, 0],
[1, 0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 1, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 1, 1, 1],
[0, 1, 0, 1, 1, 0, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
];
var contFilas = matrix.length;
var contColumnas = matrix[0].length;
var regions = [];
var regionCollection = [];
for (var y = 0; y < contFilas; y++) {
var regionline = [];
regions.push(regionline);
for (var x = 0; x < contColumnas; x++) {
var pixelRegion = 0;
var pixelRegions = [];
regionline[x] = 0;
if (matrix[y][x] === 1) {
// check previous row
if (y) {
if (matrix[y - 1][x] && pixelRegions.indexOf(regions[y - 1][x]) < 0) {
pixelRegions.push(regions[y - 1][x]);
}
if (x && matrix[y - 1][x - 1] && pixelRegions.indexOf(regions[y - 1][x - 1]) < 0) {
pixelRegions.push(regions[y - 1][x - 1]);
}
if (x + 1 < contColumnas && matrix[y - 1][x + 1] && pixelRegions.indexOf(regions[y - 1][x + 1]) < 0) {
pixelRegions.push(regions[y - 1][x + 1]);
}
}
// check current row
if (x && matrix[y][x - 1] && pixelRegions.indexOf(regions[y][x - 1]) < 0) {
pixelRegions.push(regions[y][x - 1]);
}
if (!pixelRegions.length) {
// if not connected, start a new region
regionCollection.push([]);
pixelRegion = regionCollection.length;
} else {
// update to lowest region index
// sort and ensure unique
pixelRegions = pixelRegions.sort().filter(function (value, index, self) {
return self.indexOf(value) === index;
});
// union regions if there is a new connection
for (var idx = pixelRegions.length - 1; idx > 0; idx--) {
regions.forEach(function (regionline, ry) {
regionline.forEach(function (region, rx) {
if (region === pixelRegions[idx]) {
regions[ry][rx] = pixelRegions[idx - 1];
}
})
})
regionCollection[pixelRegions[idx - 1] - 1] = regionCollection[pixelRegions[idx - 1] - 1].concat(
regionCollection[pixelRegions[idx] - 1]
)
regionCollection[pixelRegions[idx] - 1] = [];
}
pixelRegion = pixelRegions[0];
}
// remember region
regionline[x] = pixelRegion;
regionCollection[pixelRegion - 1].push([x, y]);
}
}
}
// filter out empty regions
regionCollection = regionCollection.filter(function (el) {
return el && el.length > 0;
});
// output
var canvas = document.querySelector("canvas");
var ctx = canvas.getContext("2d");
var sz = 20;
canvas.width = sz * contColumnas;
canvas.height = sz * contColumnas;
ctx.fillStyle = "silver";
ctx.fillRect(0, 0, canvas.width, canvas.height);
regionCollection.forEach(function (regionCoords, region) {
regionCoords.forEach(function (coord) {
ctx.fillStyle = "black";
ctx.fillRect(coord[0] * sz + 1, coord[1] * sz + 1, sz - 2, sz - 2);
ctx.fillStyle = "white";
ctx.fillText(region + 1, coord[0] * sz + 8, coord[1] * sz + 13);
})
});
document.querySelector("#result").innerHTML = JSON.stringify(regionCollection)
&#13;
<canvas></canvas>
<div id="result"></div>
&#13;