如何使用word2vec训练分类器?

时间:2017-11-29 23:58:19

标签: python word2vec naivebayes

该代码用于生成word2vec并使用它来训练朴素贝叶斯分类器。 我能够生成word2vec并成功使用相似性函数。作为下一步,我想使用word2vec来训练朴素的贝叶斯分类器。目前,当我试图在测试和培训中切割数据时,代码给出了错误。如何将word2vec模型转换为数组,以便它可以用作训练数据。

#导入库     导入numpy为np     将matplotlib.pyplot导入为plt     将pandas导入为pd     import gensim

# Importing the dataset
dataset = pd.read_csv('Restaurant_Reviews.tsv', delimiter = '\t', quoting = 3)

# Cleaning the texts
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
corpus = []
for i in range(0, 1000):
    review = re.sub('[^a-zA-Z]', ' ', dataset['Review'][i])
    review = review.lower()
    review = review.split()
    ps = PorterStemmer()
    review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))]
#    for word2vec we want an array of vectors

    corpus.append(review)

#print(corpus)
X = gensim.models.Word2Vec(corpus, min_count=1,size=1000)
#print (X.most_similar("love"))


#embedding_matrix = np.zeros(len(X.wv.vocab), dtype='float32')
#for i in range(len(X.wv.vocab)):
#    embedding_vector = X.wv[X.wv.index2word[i]]
#    if embedding_vector is not None:
#        embedding_matrix[i] = embedding_vector

# Creating the Bag of Words model
#from sklearn.feature_extraction.text import CountVectorizer
#cv = CountVectorizer(max_features = 1500)
#X = cv.fit_transform(corpus).toarray()
y = dataset.iloc[:, 1].values

# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)

# Fitting Naive Bayes to the Training set
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

It gives an error on line -
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)
TypeError: Expected sequence or array-like, got <class 'gensim.models.word2vec.Word2Vec'>

2 个答案:

答案 0 :(得分:1)

Word2Vec仅提供单词嵌入。如果要通过嵌入来表征文档,则需要对每个文档中的所有单词的嵌入执行平均/求和/最大操作,以具有可用于分类的D维向量。有关详情,请参阅herethere

否则,您可以使用Doc2Vec模型直接生成文档嵌入,gensim也为其提供了非常好的提供程序。

答案 1 :(得分:0)

每个单词都有向量,现在有两种前进的方法,一种可以简单地取一个句子中所有单词的平均值来找到句子向量,另一种可以使用tfidf。

我在一个正在进行的项目中实现了平均方法,并且我共享github链接,请转到标题“文本向量化(word2vec)”,您将找到它们的代码。 https://github.com/abhibhargav29/SentimentAnalysis/blob/master/SentimentAnalysis.ipynb。但是,我建议您也先阅读数据清理,以更好地了解它。

一个重要建议:请勿将数据拆分为训练,简历,在矢量化后进行测试,在矢量化前进行测试,否则会过度拟合模型。